|
Performance of EECM-MPFQ
The following table shows the effectiveness and speed of
EECM-MPFQ.
Each row of the table has the following entries:
- bits: an integer b in {15,16,...,63}.
EECM-MPFQ was run with a sample set of b-bit primes,
i.e., primes between 2^(b-1) and 2^b.
- B_1, d_1, e, #{i}/#{j}:
the parameters used for the EECM-MPFQ run.
- samples: the size of the sample set.
- Pr: the success probability, within the sample set,
of the curve x^2+y^2=1-(24167/25)x^2y^2 with base point (5/23,-1/7)
and torsion group Z/12Z.
- mults: the number of modular multiplications used for both stage 1 and stage 2.
This is a worst-case number;
primes found before the end of stage 2 will actually use fewer modular multiplications.
- ratio: mults / Pr; i.e., the number of modular multiplications per prime found.
- power: log(ratio)/sqrt(2*log(2^b)*log(log(2^b))).
- savings: the fraction of modular multiplications saved within the sample set
by primes found before the end of stage 2.
- cycles: the number of cycles used for both stage 1 and stage 2
on a 3.2GHz AMD Phenom II X4 (100f42) for n between 192 bits and 256 bits,
divided by Pr; i.e., the number of cycles per prime found.
Here is the table:
| Parameters | Effectiveness | | | | | |
bits | B_1 | d_1 | e | #{i}/#{j} | samples | Pr | mults | ratio | power | savings | cycles |
15 | 16 | 60 | 1 | 1 | 1612 | 65.4467% | 475 | 725.8 | 0.9440 | 6.0743% | 398383 |
16 | 16 | 60 | 1 | 1 | 3030 | 50.5941% | 475 | 938.8 | 0.9369 | 3.7812% | 519846 |
17 | 27 | 60 | 1 | 1 | 5709 | 54.6856% | 632 | 1155.7 | 0.9250 | 4.4719% | 542882 |
18 | 27 | 90 | 1 | 1 | 10749 | 53.7073% | 816 | 1519.3 | 0.9231 | 4.2088% | 655581 |
19 | 37 | 90 | 1 | 1 | 20390 | 50.4708% | 946 | 1874.4 | 0.9145 | 4.0127% | 753288 |
20 | 37 | 90 | 1 | 1 | 38635 | 40.2329% | 946 | 2351.3 | 0.9092 | 2.7869% | 940225 |
21 | 37 | 90 | 1 | 1 | 73586 | 30.9787% | 946 | 3053.7 | 0.9088 | 1.8815% | 1229364 |
22 | 47 | 120 | 1 | 1 | 140336 | 33.0086% | 1292 | 3914.1 | 0.9075 | 2.1786% | 1413109 |
23 | 64 | 120 | 1 | 1 | 268216 | 30.3744% | 1491 | 4908.7 | 0.9045 | 1.9515% | 1682287 |
24 | 81 | 210 | 1 | 1 | 513708 | 36.7985% | 2276 | 6185.0 | 0.9026 | 2.5365% | 1971371 |
25 | 97 | 210 | 1 | 1 | 985818 | 31.7403% | 2427 | 7646.4 | 0.8994 | 2.1164% | 2390659 |
26 | 97 | 210 | 1 | 1 | 1048576 | 25.4204% | 2427 | 9547.5 | 0.8976 | 1.5147% | 2973591 |
27 | 131 | 210 | 1 | 1 | 1048576 | 24.4857% | 2904 | 11860.0 | 0.8959 | 1.4755% | 3528747 |
28 | 131 | 210 | 1 | 1 | 1048576 | 19.7381% | 2904 | 14712.7 | 0.8944 | 1.0864% | 4371407 |
29 | 149 | 210 | 1 | 1 | 1048576 | 16.5716% | 3065 | 18495.5 | 0.8945 | 0.8797% | 5363333 |
30 | 149 | 210 | 1 | 1 | 1048576 | 13.1368% | 3065 | 23331.5 | 0.8953 | 0.6386% | 6769323 |
31 | 263 | 210 | 1 | 2 | 1048576 | 18.4570% | 5376 | 29127.1 | 0.8953 | 1.0937% | 7834148 |
32 | 263 | 210 | 1 | 2 | 1048576 | 15.0913% | 5376 | 35623.1 | 0.8938 | 0.8394% | 9615434 |
33 | 263 | 210 | 1 | 2 | 1048576 | 12.1644% | 5376 | 44194.5 | 0.8939 | 0.6248% | 11915678 |
34 | 343 | 330 | 1 | 1 | 1048576 | 12.3212% | 6787 | 55084.0 | 0.8945 | 0.6643% | 14534927 |
35 | 389 | 420 | 1 | 1 | 1048576 | 12.3528% | 8384 | 67871.0 | 0.8944 | 0.6747% | 17488151 |
36 | 433 | 420 | 1 | 1 | 1048576 | 10.6944% | 8892 | 83146.3 | 0.8941 | 0.5658% | 21345174 |
37 | 521 | 420 | 1 | 1 | 1048576 | 9.7486% | 9909 | 101644.8 | 0.8937 | 0.4983% | 25652386 |
38 | 521 | 420 | 1 | 1 | 1048576 | 7.9452% | 9909 | 124717.5 | 0.8939 | 0.3825% | 31436961 |
39 | 587 | 420 | 1 | 1 | 1048576 | 6.8847% | 10621 | 154270.3 | 0.8948 | 0.3185% | 38319718 |
40 | 587 | 420 | 1 | 1 | 1048576 | 5.6551% | 10621 | 187812.8 | 0.8946 | 0.2510% | 47190133 |
41 | 937 | 630 | 1 | 1 | 1048576 | 7.8935% | 18236 | 231026.5 | 0.8954 | 0.4196% | 56113371 |
42 | 1031 | 630 | 1 | 1 | 1048576 | 6.9196% | 19386 | 280161.7 | 0.8953 | 0.3544% | 67437743 |
43 | 1031 | 630 | 1 | 1 | 1048576 | 5.7678% | 19386 | 336106.1 | 0.8945 | 0.2840% | 81087478 |
44 | 1031 | 630 | 1 | 1 | 1048576 | 4.6908% | 19386 | 413273.7 | 0.8957 | 0.2201% | 99684763 |
45 | 1151 | 630 | 1 | 1 | 1048576 | 4.1508% | 20833 | 501906.6 | 0.8960 | 0.1901% | 121979006 |
46 | 1319 | 630 | 1 | 1 | 1048576 | 3.7610% | 22884 | 608454.3 | 0.8964 | 0.1619% | 144341609 |
47 | 1709 | 840 | 1 | 1 | 1048576 | 4.3684% | 32129 | 735486.6 | 0.8966 | 0.2170% | 175028834 |
48 | 1889 | 840 | 1 | 1 | 1048576 | 3.8442% | 34195 | 889529.8 | 0.8970 | 0.1785% | 211435752 |
49 | 2221 | 840 | 1 | 1 | 1048576 | 3.5111% | 37877 | 1078765.6 | 0.8977 | 0.1548% | 251473421 |
50 | 2521 | 840 | 2 | 1 | 1048576 | 3.3565% | 42981 | 1280546.8 | 0.8971 | 0.1686% | 296542182 |
51 | 2521 | 840 | 2 | 1 | 1048576 | 2.7771% | 42981 | 1547693.9 | 0.8977 | 0.1338% | 360247031 |
52 | 2953 | 1050 | 1 | 1 | 1048576 | 2.8251% | 52231 | 1848839.5 | 0.8977 | 0.1323% | 437110078 |
53 | 3259 | 1050 | 2 | 1 | 1048576 | 2.5904% | 57638 | 2225087.4 | 0.8982 | 0.1344% | 512873213 |
54 | 3461 | 1050 | 2 | 1 | 1048576 | 2.2459% | 59834 | 2664140.0 | 0.8985 | 0.1094% | 611793212 |
55 | 4177 | 1260 | 2 | 1 | 1048576 | 2.3957% | 75773 | 3162841.8 | 0.8983 | 0.1207% | 725716426 |
56 | 4591 | 1260 | 2 | 1 | 1048576 | 2.1110% | 80365 | 3807039.1 | 0.8991 | 0.1064% | 871954529 |
57 | 5179 | 1260 | 2 | 1 | 1048576 | 1.9176% | 87113 | 4542925.4 | 0.8994 | 0.0928% | 1042971842 |
58 | 6037 | 1470 | 2 | 1 | 1048576 | 1.9300% | 105181 | 5449931.9 | 0.9000 | 0.0931% | 1240276698 |
59 | 6619 | 1470 | 2 | 1 | 1048576 | 1.7487% | 112026 | 6406401.3 | 0.8996 | 0.0808% | 1464353027 |
60 | 7039 | 1470 | 2 | 1 | 1048576 | 1.5140% | 117156 | 7738391.8 | 0.9008 | 0.0675% | 1770959606 |
61 | 7039 | 1470 | 2 | 1 | 1048576 | 1.2843% | 117156 | 9122073.9 | 0.9006 | 0.0566% | 2068996731 |
62 | 10099 | 2310 | 2 | 1 | 1048576 | 1.7102% | 184177 | 10769173.1 | 0.9006 | 0.0874% | 2465038140 |
63 | 10427 | 2310 | 2 | 1 | 1048576 | 1.4974% | 187902 | 12548852.1 | 0.9000 | 0.0751% | 2882767693 |
Version
This is version 2009.12.01 of the performance.html web page.
|