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Abstract. This paper sets new speed records for ECM, the elliptic-curve method of factoriza-
tion, on several different hardware platforms: GPUs (specifically the NVIDIA GTX), x86 CPUs
with SSE2 (specifically the Intel Core 2 and the AMD Phenom), and the Cell (specifically the
PlayStation 3 and the PowerXCell 8i). In particular, this paper explains how to carry out more
than one billion 192-bit modular multiplications per second on a $2000 personal computer.

1 Introduction

The paper “ECM on Graphics Cards” at Eurocrypt 2009 [6] reported a new implementation
of ECM performing 41.88 million 280-bit mulmods per second on an NVIDIA GTX 295
GPU. Here “mulmods” are modular multiplications, and ECM is the elliptic-curve method
of factorization, a critical subroutine inside NFS, the number-field sieve. See [6, Section 1]
for discussion of the cryptanalytic importance of ECM and NFS.

For comparison, the standard GMP-ECM software package, running simultaneously on
all four cores of an Intel Core 2 Quad Q9550 CPU, performs only 14.85 million mulmods
per second with the same 280-bit modulus length. The same paper recommended building
a $2226 computer with two GTX 295 GPUs and a Core 2 Quad Q6600 CPU, performing in
total an astonishing 96.79 million 280-bit mulmods per second.

In this paper we show that GPUs are capable of much higher performance. For example,
with 210-bit moduli, the same GTX 295 can carry out 481 million mulmods per second.
This example uses a somewhat smaller modulus size than [6], but this change explains only
a small part of the tenfold increase in speed.

This paper also sets new ECM speed records on several different CPUs: for example, with
192-bit moduli, a Cell-based IBM BladeCenter QS22 can carry out 334 million mulmods per
second; an AMD Phenom II 940 can carry out 202 million mulmods per second (20% more
on the same CPU than the ECM software being used in the ongoing RSA-768 factorization
project); an Intel Core 2 Quad Q9550 can carry out 114 million mulmods per second; and
a low-cost PlayStation 3 can carry out 102 million mulmods per second with slightly larger,
195-bit moduli. Our software is tuned in many platform-specific ways but in every case
benefits from systematically exploiting the available parallelism.

We find that GPUs are faster than CPUs, but that the best price-performance ratio is
achieved by computers that run CPUs and GPUs simultaneously, as in [6]. Specifically, a
computer with one Phenom II 940 CPU and two GTX 295 GPUs costs only about $2000
and handles 1.1 billion 192-bit mulmods per second with our ECM software, several times
faster than the best result of [6].



Our GPU software goes beyond the software of [6] not only in speed but also in generality:
most importantly, within the range of modulus sizes that are of interest inside NFS-over-
ECM, we handle several different sizes, while [6] handled only 280 bits. We expect the
same techniques to be useful for other computations bottlenecked by modular multiplication.
The traditional example (typically with 1024-bit moduli, larger than in this paper) is RSA,
while a much more modern example (typically with similar modulus sizes to this paper) is
evaluation of pairings to verify short signatures. Note that for efficiency one must feed many
simultaneous computations to the hardware; this is not possible for a laptop carrying out
an occasional cryptographic computation, but it is feasible for a busy server bottlenecked
by cryptography, and it is very easily achieved inside cryptanalytic computations such as
NFS-over-ECM.

Readers not familiar with ECM can find all relevant background in [32], [7], and [6].

2 Today’s Computing Hardwares

2.1 X86 and Streaming SIMD Extensions

The 64-bit x86 instruction set (x86-64) is supported by all AMD CPUs since the K8 (Opteron
and Athlon 64), some versions of the Intel Pentium 4, and all Intel Core 2 and i7 CPUs.
In x86-64 there are sixteen 64-bit general-purpose integer registers (GPRs). Modern x86-
64 processors decode the variable-length CISC instructions into RISC-like micro-operations
for possibly out-of-order dispatching in 3 unified pipelines (Intel Core) or 3 integer plus 3
floating-point pipelines (AMD).

The GNU Multi-Precision (GMP) library uses the biggest multiplication available, the
MUL instruction (unsigned 64×64 = 128-bit) to compute multi-precision integers in a straight-
forward manner, using 64-bit limbs with native ADC (add-with-carry) instructions.

AMD K8 and K10 CPUs sport an impressive integer multiplier that can in theory dispatch
a 64× 64 = 128-bit MUL once every two cycles with a latency of 4–5 cycles. In practice other
bottlenecks — principally the forced use of registers (RDX,RAX) for the product and RAX for
the multiplicand — makes it challenging to average one 64×64 = 128-bit MUL every 3 cycles.

Intel CPUs can only dispatch one 64 × 64 = 128-bit MUL every 4 cycles, with a latency
of 7 cycles. Furthermore, MUL uses resources (32-bit multipliers) that conflict with other
instructions. Therefore it becomes imperative to consider other approaches to big integer
arithmetic than the 64-bit MUL instructions, such as the x86 vector instructions below.

SSE2 Instructions All Intel CPUs since the Pentium 4 and all AMD CPUs since the
K8 supports the SSE2 (Streaming SIMD Extensions 2) instruction set, where SIMD in turn
stands for Single Instruction Multiple Data (performing the same action on many operands).
SSE2 instruction set operates on 16 architectural 128-bit registers, called xmm [0–15], as
packed 8-, 16-, 32- or 64-bit ints. The instructions are arcane and highly non-orthogonal:

Load/Store: Between xmm and memory or lowest xmm unit zero-extended and GPR.
Reorganize Data: Multi-way 16- and 32-bit move called Shuffles (8-bit available in SSSE3

only), and Packing, Unpacking, or Conversion on vector data of different densities.
Logical: AND, OR, NOT, XOR; Shift (packed 16-, 32- or 64-bits) Left, Right Logical and

Right Arithmetic; Shift entire xmm register right/left byte-wise only.



Arithmetic: Add/subtract on 8-, 16-, 32- and 64-bit integers (including “saturating” ver-
sions); multiply of 16-bits (high and low word returns, signed and unsigned, and fused
multiply-multiply-adds) and 32-bits unsigned; max/min (signed 16-bit, unsigned 8-bit);
unsigned averages (8-/16-bit); sum-of-differences for 8-bits. A regular set of arithmetic
instructions are available on IEEE-754 single and double floats.

Experiments demonstrate that, on AMD CPUs, integer multiplication uses separate com-
putational resources from the vector instructions. On Intel CPUs the resources conflict.

Both Intel Core and AMD K10 architectures can pipeline most vector instructions with
a theoretical throughput of one instruction per cycle. One attractive possibility is vectorized
floating-point arithmetic, specifically the MULPD (multiply 2 packed doubles — 53 bits of
mantissa) instruction, with a radix of 224. Another attractive possibility is vectorized integer
arithmetic, specifically the PMULUDQ (packed multiply unsigned doubleword to quadword)
instruction, which can do two 32 × 32 = 64-bit products every cycle. Of course without
intrinsic carry flags for SSE additions, for big integer arithmetic we still need to hand-carry
unsigned limbs. Still, we are able to go as high as radix 230, which usually saves a limb, and
carrying integral limbs uses shifts and bitmasks, which is no worse than the add-subtract in
float limbs.

For completeness, we tested and optimized single-thread assembly code using MUL, PMULUDQ,
and MULPD as the principal way to multiply for every x86-64 CPU we have. A simple model
predicts, and experiments confirm, that PMULUDQ is fastest for Intel and using the 64-bit MUL
is best for AMD.

Other vector instruction sets on x86 (SSE3, SSSE3, and SSE4) have no further instruc-
tions that help big integer arithmetic throughput. Note that the signed 32×32 = 64 multiply
(PMULDQ) in SSSE3 cannot be used due to the lack of an arithmetic 64-bit right shift. We
expect this to change only when AMD’s SSE5 (with fused multiply-adds) come to market.

2.2 Graphics Cards from NVIDIA and CUDA

Today’s graphics cards contain powerful graphics processing units (GPUs) to handle the
increasing complexity and screen resolution in video games. GPUs have now developed into
a powerful, highly parallel computing platform that finds more and more interest outside
graphics-processing applications. In cryptography, there have been many attempts of ex-
ploiting the computational power of GPUs [10,11,26,31]. In particular, Bernstein et al. have
explored the possibility of using graphics cards to speed up ECM computation [6]. The inter-
ested reader is referred to their paper for a more detailed description of the GPU computing
platform and various NVIDIA graphics cards; here we only provide a brief summary of GPU
programming. More importantly, we will compare our results with theirs in Section 4. Some
of the information here is repeated from [6] to keep this paper self-contained.

Like Bernstein et al., we use NVIDIA’s GPUs because they provide a programmer-
friendly parallel programming environment called CUDA. A GPU program (*.cu) is written
in CUDA and compiled into intermediate virtual machine code (*.ptx). The NVIDIA driver
then converts that into real machine code (*.cubin) and loads it to run with appropriate
data.

A typical NVIDIA GPU contains several to several tens of streaming multiprocessors
(MPs), as depicted in Figure 1. Each MP contains a scheduling and dispatching unit that



Fig. 1. NVIDIA’s GPU Block Diagram

can handle many lightweight threads. The actual computation is done by eight streaming
processors (SPs) and two super function units (SFUs) on each MP, and a GPU typically
contains tens to hundreds of these SPs, which NVIDIA advertises as “cores.”

Like in any other architecture with a memory hierarchy, the closer any memory is to
the processor core, the faster it will be. So there are, as shown in Figure 1, a big register
file, fast on-die shared memory, fast local read-only caches to device memory on the card,
and uncached thread-local and global memories. Note that the NVIDIA platform only pro-
vides read-only caching. Programmers are on their own to manage the caching of read-write
memories.

Uncached memories have relatively low throughput and long latency. For example, a
GeForce 8800 GTX has 128 SPs running at 1.35 GHz; its controllers have a total throughput
of only 86.4 GB/s to device memory. This translates to one 32-bit floating-point number per
cycle per MP, not to mention the latency of 400–600 cycles.

These characteristics mean that GPU programming generally involves controlling a large
number of threads. The benefits of using many threads are twofold. First, we will be able to
exploit thread-level parallelism in the application via mapping these threads to the hundreds
of SPs in GPU and having them run in parallel. Secondly, having multiple threads time-share
a physical SP enables latency hiding, a well-known strategy in the computer architecture
community. Only with enough threads can we eliminate wasted clock cycles (caused by
dependent pipeline stalls) and fully utilize all computational units available on GPU. In
particular, NVIDIA reports the theoretical maximal GFLOPS of their GPUs as if the user
can always run enough threads filling up the 20+-stage pipelines of all SPs.

In the CUDA programming model, the threads of an application are organized in a two-
tier hierarchy. At top level they form a thread grid, which just means that they run one
single program called the kernel. A grid of threads are divided into thread blocks. Threads in



the same block can cooperate, while different blocks of threads run independently. A block
of threads must be executed by one single MP, which makes intra-block cooperation such
as thread synchronization much easier. Thread blocks also make scaling easier: GPUs with
more MPs can process more blocks in parallel without changing the program or the kernel
configuration.

Even though the CUDA programming model is about the concept of threads, it is essential
for the programmer to understand that the minimal scheduling entity is actually a warp.
In CUDA, the number of threads in a warp depends on microarchitecture implementation;
for all current GPUs it is 32. Each instruction is in fact decoded only once a warp. Hence,
each thread in a warp must run the same program (SPMD or same program multiple data),
controlled by built-in variables (e.g., ThreadID). Thus we need at least 8× 24/32 = 6 warps
per MP since a float instruction has a latency of 20–24 cycles.

The GPU threads are lightweight hardware threads, which incur very fast context switches
with little overhead. To support this, the physical registers are divided among all active
threads. For example, on 8800 GTX there are 8192 registers per MP. If we were to use 256
threads, then each thread could use 32 registers — very few for complicated algorithms. The
register pressure can be even greater, as sometimes the conversion of the virtual machine code
leaves something to be desired. GPUs from the GT2xx family have twice as many registers,
making things much easier.

To summarize, the massive parallelism in NVIDIA’s GPU architecture makes GPU pro-
gramming very different from sequential programming on traditional CPUs. In general, GPUs
are most suitable for executing the data-parallel part of an algorithm. To get the most out of
the theoretical arithmetic throughput, one must maximize the ratio of arithmetic operations
to memory accesses.

2.3 Cell Processor

The Cell processor was jointly developed by Sony, Toshiba, and IBM in 2005. A Cell processor
is constructed from one Power Processing Element (PPE) and eight Synergistic Processor
Elements (SPEs) with a high-bandwidth Element Interconnection Bus (EIB), as shown in
Figure 2. The processor cores work at clock rates up to 4 GHz, while the EIB works at half of

Fig. 2. The Cell Processor Block Diagram



the system clock rate. EIB does not only connects PPE and SPE but also memory and I/O
controllers. EIB is composed of four rings, each offering a bandwidth of 16 bytes per cycle,
and supports multiple simultaneous transfers per ring. The peak bandwidth of the entire EIB
is 96 bytes per cycle. The PPE is more of a conventional PowerPC processor, which supports
two-level on-chip caches with multi-threading capability and vector multimedia extensions.
The PPE’s main task is usually to run the operating system.

Each SPE is composed of a synergistic processor unit (SPU) and a memory flow controller
(MFC). The SPU, acting like a RISC processor, is used mainly for computation. Each SPU
has a SIMD unit that is capable of vector processing of integer and floating-point numbers
of various lengths. The SIMD unit is an important feature for high-performance computing
and will be described in more detail later in this section.

The SPU contains a 256-kilobyte local store for instructions and data needed for executing
a program on it. Instructions and data must be explicitly moved to the local store by sending
direct memory access (DMA) commands to the MFC. The MFC acts like a DMA engine and
handles communication between the local SPE core and other cores, main memory, and the
I/O controller. The use of DMA allows for efficient use of memory bandwidth and enables
overlapping of computation and communication.

Figure 3 shows the block diagram of an SPE. Each SPU has a large 128-entry, 128-bit-

Fig. 3. SPE Block Diagram

wide register file. The flat architecture (all operand types stored in a single register file)
of the register file allows for instruction latency hiding without speculation [1]. The SPU



has two in-order issued pipelines, called the even and odd pipelines, which can issue and
complete up to two instructions per cycle. The two pipelines handle different instruction
types, as shown in Figure 3. Roughly, value computation will use the even pipeline while
access to local store (including address calculation) will use the odd pipeline. The arithmetic
logical units (ALUs) in the SPU are also designed to support 128-bit-wide SIMD operations,
which can process up to eight short integer operations, four single-precision floating-point
operations, or two double-precision floating-point operations concurrently every cycle.

In 2008, IBM introduced a new variant of the Cell processors, called the PowerXCell 8i.
Compared with the previous Cell processors, PowerXCell 8i supports fully-pipelined double-
precision floating-point operations. The double-precision peak throughput of a PowerXCell
8i processor is 102 GFLOPS using 8 SPEs, as opposed to 14 GFLOPS with the previous
Cell processor. The Roadrunner, currently #1 on the list of Top 500 supercomputers [2],
consists of 12960 PowerXCell 8i processors and offers a peak performance of more than
1700000 GFLOPS.

There has been a small amount of previous work in optimizing cryptographic algorithms
on the Cell processor. Costigan and Scott published their experience porting SSL to the
Cell processor [12]. They use multi-precision math library provided by IBM Cell’s SDK on
the SPE to implement the kernel operations in SSL, whereas we implement our own multi-
precision arithmetic without using IBM’s library. Recently, Costigan and Schwabe reported
a fast implementation of elliptic curve cryptography based on Curve25519 for the Cell [13].
This curve is defined modulo 2255

− 19 to allow extremely fast reduction. We handle general
moduli as required for ECM.

3 Implementation

3.1 Elliptic-curve Arithmetic

We use the windowed double-and-add algorithm to compute the scalar multiples of a point on
elliptic curves [6,7], in which a scalar multiplication is transformed into a sequence of point
doublings and additions. To avoid the expensive division operations, we use the projective
coordinates to represent the point Q = (X : Y : Z), whereas the starting point P is stored in
its affine coordinates (x, y). We choose the standard Edwards coordinates and use the mixed
addition law on Edwards curves [21]. The addition law is given by

X3 = Z1(X1Y2 − Y1X2)(X1Y1 + Z2
1X2Y2)

Y3 = Z1(X1X2 + Y1Y2)(X1Y1 − Z2
1X2Y2)

Z3 = Z2
1 (X1X2 + Y1Y2)(X1Y2 − Y1X2),

whereas the doubling law is given by

X3 = ((X1 + Y1)
2
− (X2

1 + Y 2
1 ))((X2

1 + Y 2
1 ) − 2Z2

1 )

Y3 = (X2
1 + Y 2

1 )(X2
1 − Y 2

1 )

Z3 = (X2
1 + Y 2

1 )((X2
1 + Y 2

1 ) − 2Z2
1 ).



Note that the extended Edwards coordinates presented by Hisil et al. [20] save 1 multiplica-
tion per addition but require extra storage and scheduling. On several platforms storage is
a concern so we did not apply those formulas.

In the windowed double-and-add algorithm, the number of doublings will be equal to the
number of bits in the scalar k, while the number of additions will depend on the window
size. With a larger window size, a smaller number of additions will be executed during the
computation of the scalar multiplication. However, this speed-up comes at a price of extra
storage space, i.e., the pre-computed points need to be stored in memory. On modern x86
CPUs, this is not a problem since the on-die caches are usually large enough to hold many
pre-computed points. On the Cell processor and GPU, the on-die fast memories are more
limited, and we need to store the pre-computed points in off-chip device memories, accessing
which involves a high latency. The Cell processor has an architectural design that helps
relieve this problem. Namely, with the help of MFC, we are able to store pre-computed
points in off-chip main memory rather than in on-die local store. Since the computation
time of a point doubling on an elliptic curve is much longer than the transmission time for
fetching the next pre-computed point to be used in the subsequent addition (if any), we can
overlap computation and communication via the well-known double-buffer mechanism. As
a result, our ECM implementation is able to support virtually an arbitrarily large window
size. A similar latency-hiding strategy also works on NVIDIA GPU, except that we need to
explicitly move the data, as opposed to the use of a DMA memory controller.

3.2 Modular Arithmetic

The kernel operation of ECM is multi-precision integer modular arithmetic, in which an
integer is represented using L limbs in radix 2r with each limb ranging from −2r−1 to 2r−1

and stored in a single-precision variable. The single-precision arithmetic can be carried out by
either fixed-point or floating-point arithmetic, depending on which arithmetic delivers higher
throughput on the chosen hardware platform. Such a representation allows us to represent
any integer between −R/2 and R/2, where R = 2Lr.

On the x86 CPU, we take advantage of the wide arithmetic pipelines and use 64-bit integer
arithmetic aided by XMM arithmetic. On NVIDIA GPU, we use 24-bit integer arithmetic,
which in a single cycle can produce the lower 32 bits of the product of two 24-bit integers.
We also use full 32-bit addition and subtraction, whose throughput is one every cycle. On
the Cell processor, we use 16-bit integer arithmetic, which in a single cycle can produce a
32-bit product. The PowerXCell 8i processor has a better, fully-pipelined double-precision
floating-point arithmetic implementation, which we take advantage of and implement the
modular arithmetic with.

Stage-1 ECM requires additions, subtractions, and multiplications modulo N , where
N is the number to be factored. We use Montgomery’s method to avoid trial divisions in
computing modular operations [25]. In this method, addition and subtraction modulo N are
straightforward, as we can simply add and subtract, respectively, the two operands limb by
limb, followed by a carry reduction to bring each limb to its normal range of −2r−1 to 2r−1.
We note that it is fairly safe to skip a small number of carry reduction steps after an addition
or a subtraction because we have some headroom in the storage of the limbs if we do not
need to multiply the result immediately.



The modular multiplication is more complicated, as it involves a multiplication step
followed by a reduction step. Textbook description says that there are more advanced al-
gorithms, e.g., the Karatsuba multiplication, that would outperform the plain schoolbook
multiplication when the number of limbs is in the range that we are interested in. However,
as the latter makes better use of the native fused multiply-and-add (MADD) instruction on
the Cell processor and GPU, it turns out to be faster in this context and hence becomes the
choice of multiplication method in our implementation. On the x86 CPU, since the number
of limbs is small, we go to schoolbook directly.

The following step is the modular reduction. Suppose that the two original operands have
L limbs with radix 2r in multiplication step. Multiplication produces a partial product C
with 2L limbs such that C =

∑2L−1
i=0 ci2

ri. In the multi-precision case of Montgomery multi-
plication, we will eliminate the lower half of C by adding a specific multiple of the modulus N
sequentially, i.e., making c′0 = 0, c′1 = 0, . . . , c′

L−1 = 0 so that after this elimination step, the

upper half c′2L−12
r(L−1) +c′2L−22

r(L−2) + . . .+c′
L

will be the result of modular multiplication.
As we have mentioned in Section 3.1, some of the operands of the modular arithmetic

operations are stored in off-chip device memories on the Cell processor and GPU. To load
these operands incurs a long latency, which we hide via the well-known double-buffer strategy.
To support this strategy, each modular arithmetic operation is further broken down into
three sub-operations: load, execute, and store. This is similar to the design philosophy of
the Reduced Instruction Set Computer (RISC), in which memory latency is exposed to
the compiler designers and assembly-language programmers so that they can schedule the
instructions properly to hide memory latency via instruction-level parallelism.

One reason why we are able to achieve such a tremendous speed-up over previous results
is that we have a different thread organization. Recall that in [6], one modular multiplication
is carried out by a group of 28 threads. This same amount of work can be done by fewer
threads; in fact, there is a natural way to divide the work equally to be done by k threads as
long as k divides the number of limbs n. It is easy to verify that in such a work decomposition,
the total number of registers required for a fixed amount of computation roughly remains
constant. If one uses less threads to compute a single multiplication, then each thread will
use more resources, putting more pressure on, e.g., the fast on-die shared memory. The
other hand, each thread will do more work, and hence we will have a higher compute-to-
memory-access ratio. In [6], the authors used a design that is on one extreme of the spectrum,
namely, n threads to compute an n-limb multiplication. In this paper, we try the other end,
namely, one single thread to compute one n-limb multiplication. We are able to achieve a
much improved compute-to-memory-access ratio, as well as eliminate inefficiencies due to
synchronization overhead and such, resulting in a much improved performance.

3.3 Software Pipelining, Loop Unrolling, and Hyperthreading

ECM is embarrassingly parallelizable and can exploit SIMD by running many curves in
parallel. This is always achievable in practice, since trying ECM on a single curve with
a large parameter B1 is not as effective as using the same amount of time to try many
curves with a smaller B1. This is also necessary for GPUs, since fewer threads would not run
faster — we would see almost the same speed with many pipeline stalls. The reason of course
is that compared to modern processors, the SPs in GPUs do very high latency operations.
However, this phenomenon is not limited to GPUs.



We know that modern CPUs often have out-of-order execution and their dispatchers look
very hard for ILP (instruction-level parallelism). But sometimes there is just not enough ILP,
and all the pipelines would be mostly full of bubbles. In our preliminary implementations we
observe some of these situations, especially in the reduction step of Montgomery modular
multiplication. For example, on an SPU of the PowerXCell 8i processor, it takes about 900
cycles to complete two Montgomery multiplications simultaneously, using two-way SIMD on
double-precision floats, of which 500 are actually wasted due to data-dependent stalls.

An analogous situation happened with an extreme case among modern CPUs, namely
the Pentium 4, which has ALU running at a clock twice as fast as the rest of the chip,
but with pipelines with 30+ stages. Even with out-of-order execution, it is extraordinarily
difficult to fill a pipeline that is even deeper than the GPUs today. The difficulty to locate
and use ILP is compounded because there are only six general-purpose registers.

Part of Intel’s solution is to make the CPU run two hardware threads. The two threads
each have their own set of architectural registers, switching whenever there is a stall. Intel
calls this form of symmetric multithreading hyperthreading. While it of course can never
get close to the 2× speedup from having another core, hyperthreading can achieve fairly
impressive gains for certain classes of code.

If there are enough spare registers, both architectural and actual, then we can apply
the following strategy to utilize these unused resources as well as the computational power
wasted by the pipeline stalls. We can run more “threads” of computation simultaneously
by interleaving instructions from several flows of independent computations into one single
physical thread of instructions. By measuring the percentage of time spent in useful compu-
tation, we conclude that such a strategy of combining software pipelining and loop unrolling
(SPLU) does work well on Cells.

On x86-64 CPUs, SPLU cannot work as above since they have too few GPRs architec-
turally. However, a different kind of SPLU is possible in the following sense: Modern x86-64
CPUs have multiple independent pipelines that execute multiple instructions in parallel.
Their combined throughput is additive if there is no contention to shared resources such as
arithmetic circuitry or external memory. When mixed properly, a sequence of instructions
containing a stream of 64-bit integer multiplications (using MUL and GPRs) and another
stream of 32-bit SIMD integer multiplications (using PMULUDQ and XMM registers) can theo-
retically achieve a throughput close to those combined from two threads executed separately
on the latest AMD Phenom IIs. This we call heterogenous software multi-threading.

In practice, we are able to speed up our AMD code by 20%+. This agrees with conven-
tional wisdom that the two types of multiplications share no circuitry on an AMD CPU.

Unfortunately this is not the case with Intel CPUs, and the throughput of the combined
instruction stream is much lower than the sum of the throughputs had we executed two
individual streams. However, our heterogeneous software hyperthreaded ECM code used for
the C2+ still gained more than native hyperthreading when we ran it on the Ci7.

4 Experimental Results

We measure the performance of our implementations of stage-1 ECM for B1 = 8192 on
various hardware platforms and present the experimental results in this section. We have
three different families of hardware platforms: GPU, x86 CPU, and Cell. For GPU, we



perform our experiments on NVIDIA GTX 295. For x86 CPU, we have AMD Phenom II
940 at 3 GHz (K10+) and Intel Core 2 Quad Q9550 at 2.83 GHz (C2+). For Cell, we
have Sony PlayStation 3 (PS3) and IBM BladeCenter QS22, and only the latter supports
high-throughput double-precision floating-point arithmetic.

The performance of our latest implementations of stage-1 ECM for these hardware plat-
forms is summarized in Figure 4 and Table 1. We note that in Table 1, since different
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Fig. 4. Performance comparison of stage-1 ECM on various hardware platforms

implementations may use different bit lengths, we scale the results to 192 bits in order to
compare their performance. As a rule of thumb, since the bottleneck of the computation is
the (schoolbook) multi-precision integer multiplication, whose complexity grows quadrati-
cally as the number of bits in the multiplicand, we use the square of the length of the moduli
in bits to scale the results. For example, the result of a 280-bit ECM would be scaled by
2802/1922, or roughly a factor of two. Such a scaling ignores factors such as pressure on
on-die memories, which can be significant for GPU implementations. As we can see from
Figure 4, there are two dips on the GPU curve when we go above 210 bits and 299 bits.
These are precisely when we have to reduce the number of thread blocks because we do not
have enough fast memories to support as many thread blocks. As a result, the exponent
of the linear regression line for GPU result on logarithmic scale is −2.46, showing that the
performance actually drops faster than quadratically as we increase the number of bits in
the modulus.

It is clear that from Figure 4, the GPUs have the best performance across all modulus
lengths. The runner-up is AMD’s K10+, whose price-performance ratio is also very compet-



Table 1. Performance results of stage-1 ECM on selected hardware platforms.

GTX 295 K10+ C2+ QS22 PS3 GTX 295 [6]

#cores 480 4 4 16 6 480
clock (MHz) 1242 3000 2830 3200 3200 1242
price (USD) 500 190 270 $$$ 413 500
TDP (watts) 295 125 95 200 <100 295
GFLOPS 1192 6+24 3+23 204 154 1192

#threads 46080 48+16 48+16 160 6
#bits in moduli 210 192 192 192 195 280
#limbs 15 3+7 3+7 8 15 28
window size (bits) u6 u6 u6 s5 s5 s4

mulmods (106/sec) 481 202 114 334 102 42
curves (1/sec) 4928 1881 1110 3120 1010 401
curves (1/sec, scaled) 5895 1881 1110 3120 1042 853

itive. Since the CPU results are obtained via SPLU, we list two numbers for GFLOPS and
#threads, one for 64-bit integer (left) and the other for SIMD units (right). We note that
such GFLOPS rating can be misleading since different platforms have different arithmetic
pipeline widths, and the wider the pipeline is, the more useful a “FLOP” is, which is evident
from the numbers of GPU vs. CPU as well as QS22 vs. PS3.

It is important to note that this gain in computational power does not come at a price
of power consumption. The billion-mulmod PC that we recommend can be run on a 850W
power supply, whereas we measured from the outlet a K10+ (Phenom II 940) running our
code and got 170W. Since our box is more than five times as fast as the K10+, the billion-
mulmod-per-second PC is more efficient per watt.

We show the effect of heterogeneous software hyperthreading on x86 CPUs in Figure 5,
using 192-bit mulmods on AMD K10+ as an example. In Figure 5, each point represents a
way to mix the XMM and integer instructions. We see that some ways of mixing actually
result in worse performance than time sharing between XMM and integer units, although
most combinations yield some improvements.

The Cell processor is also quite competitive in terms of price-performance ratio, as its
price in Table 1 is that of a whole machine, unlike the other platforms for which only the
component prices are listed. This is largely due to the fact that Sony is currently subsidizing
its PS3 sales, making PS3 an attractive platform for ECM.
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