
ECM on Graphics Cards

Daniel J. Bernstein1, Tien-Ren Chen2, Chen-Mou Cheng3,
Tanja Lange4, and Bo-Yin Yang2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Institute of Information Science, Academia Sinica,

128 Section 2 Academia Road, Taipei 115-29, Taiwan.
{by,trchen1033}@crypto.tw

3 Department of Electrical Engineering,
National Taiwan University, Taipei 106-70, Taiwan

doug@crypto.tw
4 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org

Abstract. This paper reports record-setting performance for the elliptic-
curve method of integer factorization: for example, 604.99 curves/second
for ECM stage 1 with B1 = 8192 for 280-bit integers on a single PC.
The state-of-the-art GMP-ECM software handles 171.42 curves/second
for ECM stage 1 with B1 = 8192 for 280-bit integers using all four cores
of a 2.4GHz Core 2 Quad Q6600.
The extra speed takes advantage of extra hardware, specifically two
NVIDIA GTX 280 graphics cards, using a new ECM implementation
introduced in this paper. Our implementation uses Edwards curves, re-
lies on new parallel addition formulas, and is carefully tuned for the
highly parallel GPU architecture. On a single GTX 280 the implemen-
tation performs 22.66 million modular multiplications per second for a
general 280-bit modulus. GMP-ECM, using all four cores of a Q6600,
performs 17.91 million multiplications per second.
This paper also reports speeds on other graphics processors: for exam-
ple, 2414 280-bit elliptic-curve scalar multiplications per second on an
older NVIDIA 8800 GTS (G80), again for a general 280-bit modulus. For
comparison, the CHES 2008 paper “Exploiting the Power of GPUs for
Asymmetric Cryptography” reported 1412 elliptic-curve scalar multipli-
cations per second on the same graphics processor despite having fewer
bits in the scalar (224 instead of 280), fewer bits in the modulus (224
instead of 280), and a special modulus (2224 − 296 + 1).

Keywords: Factorization, graphics processing unit, modular arithmetic,
elliptic curves, elliptic-curve method of factorization, Edwards curves.

* Permanent ID of this document: 6904068c52463d70486c9c68ba045839. Date of this
document: 2008.11.11. This work has been supported in part by the National Sci-
ence Foundation under grant ITR–0716498, in part by Taiwan’s National Science
Council NSC-96-2218-E-001-001, and in part by the European Commission through
the IST Programme under Contract ICT–2007–216676 ECRYPT. Part of this work
was carried out while Bernstein and Lange visited NTU.

2 Bernstein, Chen, Cheng, Lange, and Yang

1 Introduction

The elliptic-curve method of factorization was introduced by Lenstra in [34] as
a generalization of Pollard’s p− 1 and Williams’ p+ 1 method. Many speedups
and good choices of elliptic curves were suggested and ECM is now the method
of choice to find factors in the range 1010 to 1060 of general numbers. The largest
factor found by ECM was a 222-bit factor of the 1266-bit number 10381+1 found
by Dodson (see [48]).

Cryptographic applications such as RSA use “hard” integers with much larger
prime factors. The number-field sieve (NFS) is today’s champion method of find-
ing those prime factors. It was used, for example, in the following factorizations:

integer bits details reported
RSA–130 430 at ASIACRYPT 1996 by Cowie et al. [16]
RSA–140 463 at ASIACRYPT 1999 by Cavallar et al. [12]
RSA–155 512 at EUROCRYPT 2000 by Cavallar et al. [13]
RSA–200 663 in 2005 posting by Bahr et al. [4]
21039 − 1 1039 (special) at ASIACRYPT 2007 by Aoki et al. [2]

A 1024-bit RSA factorization by NFS would be considerably more difficult than
the factorization of the special integer 21039 − 1 but has been estimated to be
doable in a year of computation using standard PCs that cost roughly $1 billion
or using ASICs that cost considerably less. See [42], [35], [19], [22], [43], and [29]
for various estimates of the cost of NFS hardware. Current recommendations for
RSA key sizes — 2048 bits or even larger — are based directly on extrapolations
of the speed of NFS.

NFS is also today’s champion index-calculus method of computing discrete
logarithms in large prime fields, quadratic extensions of large prime fields, etc.
See, e.g., [26], [27], and [5]. Attackers can break “pairing-friendly elliptic curves”
if they can compute discrete logarithms in the corresponding “embedding fields”;
current recommendations for “embedding degrees” in pairing-based cryptogra-
phy are again based on extrapolations of the speed of NFS. See, e.g., [30].

NFS factors a “hard” integer n by combining factorizations of many smaller
auxiliary “smooth” integers. For example, the factorization of RSA-155 ≈ 2512

generated a pool of ≈ 250 auxiliary integers < 2200, found ≈ 227 “smooth” inte-
gers factoring into primes < 230, and combined those integers into a factorization
of RSA-155. See [13] for many more details.

Textbook descriptions of NFS state that prime factors of the auxiliary inte-
gers are efficiently discovered by sieving. However, sieving requires increasingly
intolerable amounts of memory as n grows. Cutting-edge NFS computations con-
trol their memory consumption by using other methods — primarily ECM — to
discover large prime factors. Unlike sieving, ECM remains productive with lim-
ited amounts of memory.

Aoki et al. in [2] discovered small prime factors by sieving, discarded any
unfactored parts above 2105, and then used ECM to discover primes up to 238.

ECM on Graphics Cards 3

Kleinjung reported in [29, Section 5] on ECM “cofactorisation” for a 1024-bit n
consuming, overall, a similar amount of time to sieving.

The size of the auxiliary numbers to be factored by ECM depends on the size
of the number to be factored with the NFS and on the relative speed of the ECM
implementation. The SHARK design [19] for factoring 1024-bit RSA makes two
suggestions for parameters of ECM — one uses it for 125-bit numbers, the other
for 163-bit numbers. The SHARK designers remark that ECM could be used
more intensively. In their design, ECM can be handled by conventional PCs
or hardware. They write “Special hardware for ECM . . . can save up to 50%
of the costs for SHARK” and “The importance of using special hardware for
factoring the potential sieving reports grows with the bit length of the number
to be factored.” As a proof of concept Pelzl et al. present in [39] an FPGA-based
implementation of ECM for numbers up to 200 bits and state “We show that
massive parallel and cost-efficient ECM hardware engines can improve the area-
time product of the RSA moduli factorization via the GNFS considerably.” Gaj
et al. [20] consider the same task and improve upon their results.

Evidently ECM is becoming one of the most important steps in the entire
NFS computation. Speedups in ECM are becoming increasingly valuable as tools
to speed up NFS.

This paper suggests graphics processing units (GPUs) as computation plat-
forms for ECM, presents algorithmic improvements that are particularly helpful
in the GPU context, and reports new ECM implementations for several NVIDIA
GPUs. GPUs achieve high throughput through massive parallelism — usually
more than 100 processes are run at clock frequencies which are not much lower
than that of state-of-the-art CPUs; e.g. the GeForce 8800GTS runs 128 processes
at 1.625 GHz. This parallelism is well suited for ECM factorizations inside the
NFS, although it also creates new resource-allocation challenges, as discussed
later in this paper. We focus on moduli of 200–300 bits since we (correctly) pre-
dicted that our ECM implementation would be faster than previous ones and
since we are looking ahead to larger NFS factorizations than 1024 bits.

Measurements show that a computer running this paper’s new ECM imple-
mentation on a GPU performs 22.7 million 280-bit modular multiplications per
second and has a better price-performance ratio than a computer running the
state-of-the-art GMP-ECM software on all four cores of a Core 2 Quad CPU.
The best price-performance ratio is obtained by a computer that has a CPU and
two GPUs contributing to the ECM computation.

2 Background on ECM

A thorough presentation of the Elliptic-Curve Method (ECM) of factorization is
given by Zimmermann and Dodson in [47]. Their paper also describes extensive
details of the GMP-ECM software, essentially the fastest known ECM imple-
mentation to date. For more recent improvements of bringing together ECM
with the algorithmic advantages of Edwards curves and improved curve choices
we refer to [8] by Bernstein et al.

4 Bernstein, Chen, Cheng, Lange, and Yang

2.1 Overview of ECM

ECM tries to factor an integer m as follows.
Let E be an elliptic curve over Q with neutral element O. Let P be a non-

torsion point on E. If the discriminant of the curve or any of the denominators
in the coefficients of E or P happens not to be coprime with m without being
divisible by it we have found a factor and thus completed the task of finding
a nontrivial factor of m; if one of them is divisible by m we choose a different
pair (E,P). We may therefore assume that E has good reduction modulo m. In
particular we can use the addition law on E to define an addition law on Ẽ, the
reduction of E modulo m; let P̃ ∈ Ẽ be the reduction of P modulo m.

Let φ be a rational function on E which has a zero at O and has non-zero
reduction of φ(P) modulo m. In the familiar case of Weierstrass curves this
function can simply be Z/Y . For elliptic curves in Edwards form a similarly
simple function exists; see below.

Let s be an integer that has many small factors. A standard choice is s =
lcm(1, 2, 3, . . . , B1). Here B1 is a bound controlling the amount of time spent
on ECM. The main step in ECM is to compute R = [s]P̃ . The computation of
the scalar multiple [s]P̃ on Ẽ is done using the addition law on E and reducing
intermediate results modulo m.

One then checks gcd(φ(R),m); ECM succeeds if the gcd is nontrivial. If
this first step — called stage 1 — was not successful then one enters stage 2, a
postprocessing step that significantly increases the chance of factoring m. In a
simple form of stage 2 one computes R1 = [pk+1]R,R2 = [pk+2]R, . . . , R` =
[pk+`]R where pk+1, pk+2, . . . , pk+` are the primes between B1 and B2, and then
does another gcd computation gcd(φ(R1)φ(R2) · · ·φ(R`),m). There are more
effective versions of stage 2. Stage 2 takes significantly less time than stage 1
when ECM as a whole is optimized.

If q is a prime divisor of m, and the order of P modulo q divides s, then
φ([s]P̃) ≡ 0 (mod q). If φ([s]P̃) 6≡ 0 mod m we obtain a nontrivial factor of
m in stage 1 of ECM as gcd(m,φ([s]P̃)). This happens exactly if there are two
prime divisors of m such that s is divisible by the order of P modulo one of them
but not modulo the other. Choosing s to have many small factors increases the
chance of m having at least one prime divisor q such that the order of P modulo q
divides s. Note that it is rare that this happens for all factors of m simultaneously
unless s is huge.

Similar comments apply to stage 2, with s replaced by spk+1, spk+2, etc.
Trying a single curve with a large B1 is usually less effective than spending

the same amount of time trying many curves, each with a smaller B1. For each
curve one performs stage 1 and then stage 2.

2.2 Edwards curves

Edwards curves were introduced by Edwards in [18] and studied for cryptography
by Bernstein and Lange in [10]. An Edwards curve is given by an equation of the
form x2+y2 = 1+dx2y2, for some d 6∈ {0, 1}. Bernstein and Lange show that each

ECM on Graphics Cards 5

elliptic curve with a point of order 4 is birationally equivalent to an Edwards
curve over the same field. For ECM we are interested in curves with smooth
order modulo factors of m, so in particular the condition of having a point of
order 4 is not a problem. On the contrary, curves with large Q-rational torsion
subgroup are more likely to lead to factorizations since the torsion subgroup is
mapped injectively under reduction. For our implementation we used Edwards
curves with Q-torsion group isomorphic to Z/2×Z/8 which were generated with
the Edwards analogue of the Atkin-Morain construction [3] as described in [8].

The addition law on Edwards curves is given by

(x1, y1)⊕ (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

The neutral element is (0, 1), so φ in the previous subsection can simply be the
x-coordinate.

For an overview of explicit formulas for arithmetic on elliptic curves we refer
to the Explicit-Formulas Database (EFD) [9]. For doublings on Edwards curves
we use the formulas by Bernstein and Lange [10]. For additions we use the
mixed-addition formulas by Hisil et al. [25, page 8] to minimize the number of
multiplications. Earlier formulas by Bernstein and Lange are complete, and can
take advantage of fast multiplications by small parameters d, but completeness
is not helpful for ECM, and curves constructed by the Atkin-Morain method
have large d.

Note that the paper [8] also contains improvements of ECM using curves with
small coefficients and base point, in which case using inverted twisted Edwards
coordinates (see [7]) becomes advantageous. In Section 4 we describe how we
implemented modular arithmetic on the GPU. The chosen representation does
not give any speed-up for multiplication by small parameters. This means that
we do not get the full benefit of [8] — but we still benefit from the faster elliptic-
curve arithmetic and the more successful curve choices on top of the fast and
highly parallel computation platform. In Section 5 we present new parallelized
formulas for Edwards-curve arithmetic.

3 The Working Platforms from NVIDIA

Driven by applications in video games, graphics-processing units (GPUs) have
developed into very powerful and highly parallel processing units that find
more and more interest outside graphics-processing applications. In cryptogra-
phy so far mostly secret-key applications were implemented (see e.g. [14] and the
book [15]) while taking full advantage of GPUs for public-key cryptography re-
mained a challenge [37]. This may be attributable to the fact that programming
graphics cards used to involve arcane programming with OpenGL.

With the G80 series of GPUs, NVIDIA not only significantly boosted the
hardware capabilities of its cards, but also presented programmers with a signif-
icant advance in the programming model by introducing CUDA, a C-like pro-
gramming language which can be compiled to run on the GPU. In this section

6 Bernstein, Chen, Cheng, Lange, and Yang

we review details of the current generation of NVIDIA graphics cards which we
used for our implementation and also give some background on CUDA.

3.1 NVIDIA GeForce Video Cards in the G8x/G9x/G2xx Series

G8x Series A typical NVIDIA G80 GPU can be found in the GeForce 8800
GTX. It contains 128 streaming processors (SPs), grouped into 16 multipro-
cessors (MPs). Each MP thus has 8 SPs. In every cycle, each SP is capable
of delivering three single-precision floating-point operations: one multiply-and-
add, plus a multiplication from the texture processing unit. Or, it can deliver
one 32-bit integer addition/subtraction or simple logical operation such as bit-
wise AND/OR/XOR per cycle. More complicated arithmetic operations, such
as floating-point division and 32-bit integer multiplication, are performed by
two “super” function units on each MP. Thus, the effective throughput of these
more complicated operations is 25% of that of the simple arithmetic operations
performed by SPs.

There are several different types of memory available on NVIDIA graphics
cards. There are global and thread-local memories, both uncached. On a GeForce
8800 GTX, the SPs run at 1.35 GHz, while the uncached memory provides a
throughput of 86.4 GB/s. This translates to 4 bytes per cycle per MP, not to
mention the associated high latency (typically 400 to 600 cycles). There are also
cached, read-only constant and texture memories, whose latency is low on cache
hits. The GPU is also able to broadcast data to multiple threads in a single
cycle if the data fetched is needed by more than one thread. Finally, there is a
16-bank, 16 KB shared memory per MP, which can deliver 64 bytes every two
cycles, or 4 bytes per cycle per SP if there is no bank conflict. All caches and
shared memories have latency close to that of registers and certainly much lower
than device memories.

Graphic chips codenamed G84/G85/G86 are low-end parts of the G80 series
marketed by NVIDIA with the same architecture but fewer (maximum of 4,
sometimes as few as 1) MPs and much lower memory throughput. These are not
cost-effective for our purposes (except for occasionally testing code on the road).

The G84/G85/G86 parts are not to be confused with lower-priced G80 parts
(e.g., the “old” GeForce 8800GTS in [45], which has 96 SPs = 12 MPs, and
the old 8800GT with 14 MPs) with slightly lower clock rates, fewer functional
units, and lower memory throughput. Due to marketing reasons, chip companies
often sell a top-end, envelope-pushing part at a huge markup, so it is often
advantageous to buy “just below the top” (we see this also with the Core 2
Quad Q6600).

G9x and GT2xx Series NVIDIA’s G92 GPUs is more or less a straightforward
die shrink of the G80 from 90nm to 65nm processes. Versions of the G92 were
used in the “new” GeForce 8800GTS 512MB (16 MPs, not to be confused with
the older part) as well as the 9800 series cards such as the 9800GTX (16 MPs)
and the 9800GX2 (in almost every aspect, two 9800GTX’s bolted back-to-back

ECM on Graphics Cards 7

and sold together). Just as in the G8x series, there are low-end G94/G96 series
GPUs sold, which are again not at all cost-effective for us.

In contrast, the newest GT2xx (formerly codenamed the G10x) series does
offer an improved design. Now each GPU has 24 (in the GTX 260) to 30 (in the
280) MPs, nearly double the number at a slightly lower clock rate. These GPUs
also have various features which should yield significant benefits if properly taken
advantage of. In particular we use that there are twice as many registers.

3.2 The CUDA Programming Paradigm

CUDA provides an environment in which software programmers can program
GPUs using a high-level, C-like language. A CUDA program (called a “kernel”)
starts with a source file foo.cu, which is first compiled by nvcc, the CUDA
compiler, into code for a virtual machine (foo.ptx), then converted into actual
machine code by the NVIDIA driver, and finally loaded and run.

CUDA adopts a super-threaded, massively parallel computational model, in
which computation is broken down and executed by a large number (typically
thousands) of threads. The seemingly concurrent execution of these threads is
mapped onto to a pool of physical processors (e.g., the 128 SPs in G80). Those
threads mapped onto the same physical processor time-share the underlying pro-
cessor. Such time-sharing is necessary for effectively hiding instruction latency,
similar to the reason why modern superscalar CPUs search for independent in-
structions to issue in a program stream. As a result, the parallelism utilized
by CUDA is termed thread-level parallelism, in contrast with instruction-level
parallelism achieved by superscalar CPUs.

At the programming level, the minimal scheduling entity is a warp of threads,
which consists of 32 threads in the current version of CUDA. A warp must be
executed by a single MP. It takes four cycles for a multiprocessor to issue an
instruction for a warp of threads (or 16 cycles if the instruction is to be executed
by the super function units). To achieve optimal instruction throughput, the
threads belonging to the same warp must execute the same instruction, for there
is only one instruction-decoding unit on each MP. We may hence regard an MP
as a 32-way SIMD vector processor. Furthermore, the typical instruction has a
latency around 20 to 24 cycles even when it involves only on-die memories (such
as registers and shared memory). Thus, it is recommended to have at least 6
warps of threads in order to completely hide this latency.

We note that the GPU threads are lightweight hardware threads, which incur
little overhead in context switch. In order to support fast context switch, the
set of physical registers is divided among all active threads. This creates some
pressure when programming GPUs. For example, on G80 and G92 there are only
8192 registers per MP. If we were to use 256 threads, then each thread would
have a share of 32 registers, which is a tight budget for implementing complicated
algorithms. The situation has improved in the latest GTX 260/280 family, which
has twice as many registers, relieving the pressure of register scarcity and making
programming much easier.

8 Bernstein, Chen, Cheng, Lange, and Yang

To summarize, the massive parallelism in the architectural design of NVIDIA
GPUs makes their programming very different from a traditional CPU architec-
ture with mostly sequential execution. Due to overhead, once a program loads
(with its data), one wants to run it on the SPs for as long as possible. In general,
GPUs are most suitable for executing the data-parallel part of an algorithm.
Finally, to get the most out of the theoretical arithmetic throughput, one must
manage memory use carefully to minimize memory access (except for on-die fast
memory), as well as meticulously arrange the parallel execution of hardware
threads to avoid bank conflicts in memory access.

4 High-throughput Modular Arithmetic on a GPU

In this section we give details and explain the design choices made in our imple-
mentation of the modular arithmetic on the GPU and show how parallelism is
used on this level.

4.1 Limitation of CUDA

Pressure on Fast On-die Memories The major source of resource limita-
tion when programming with CUDA is memory — in particular, fast memory —
including per-thread registers and per-multiprocessor shared memory. Most sig-
nificantly, on a G8x/G9x/G2xx GPU the per-SP working set of 2 KB is barely
enough room to hold the base point and intermediate point for a scalar multipli-
cation on an elliptic curve without any precomputation. To put it in perspective,
all 240 SPs on a gigantic (1.4× 109 gates) GTX 280 have between them 480 KB
fast memory. That is less than the 512 KB of fast L2 cache in an aged Athlon64
(1.6 × 108 gates)! Unfortunately, CUDA requires many more threads, i.e., 24
times the number of streaming processors, to hide instruction latency effectively.
Therefore, we will need collaboration and hence communication among groups
of threads in order to achieve a high utilization of the instruction pipelines when
implementing modular arithmetic operations on GPUs.

Race Conditions Another pitfall frequently encountered when programming
with CUDA is race conditions. In CUDA, threads are organized into blocks with
the constraint that threads belonging to the same block must execute on the
same multiprocessor. Sometimes, the execution of a block of threads will need
to be serialized when there is resource contention, e.g., when accessing device
memory. Sometimes even accessing shared memory can result in serialization
when there is bank conflict. Synchronization among a block of threads is achieved
by calling the intrinsic syncthreads() primitive, which blocks the execution
until all threads in a block have reached the same point in the program. This is
most useful when accessing slow device memory, whose latency is typically on
the order of 400 to 600 cycles. There is no atomic transaction when accessing
the fast shared memory for older GPUs such as G80 and G92. Therefore, when
accessing the same memory position, threads from a same block may suffer from

ECM on Graphics Cards 9

race conditions and thus may require explicit synchronization (i.e., serialization)
instructions, which also carry heavy performance penalties.

4.2 Design Choices of Modular Multiplication

As mentioned above, due to the special characteristics of the computing platform
at hand, we need to focus on minimizing the storage space and communication
overhead. For our target of 280-bit numbers, we opt for schoolbook multiplication
because it involves the least amount of synchronization and intermediate storage.
We have actually also implemented the standard Karatsuba technique which
has a lower number of word multiplications in theory. However, on the GPU its
performance is worse than the straightforward schoolbook method because the
latter offers more opportunities of merging multiplications and additions into
multiply-and-adds, resulting in a lower instruction count.

We represent an integer using L limbs in radix 2r, with each limb between
−2r−1 and 2r−1. This allows us to easily represent any integer between −R/2
and R/2, where R = 2Lr. To lower the costs of modular reduction we chose
to use Montgomery representation of the integers modulo m, where m is the
auxiliary number of be factored, and thus represent x mod m as x′ = Rx mod
m. Note that our limbs can be negative and so we use a signed representative
in −m/2 ≤ x′ mod m < m/2. In Montgomery representation, addition and
subtraction are performed on the representatives as usual. Let m′ be the unique
positive integer between 0 and R such that RR′−mm′ = 1. Given x′ = Rx mod
m and y′ = Ry mod m the multiplication is computed on the representatives as
α = (x′y′ mod R)m′ mod R followed by β = (x′y′+αm)/R. Note that since R is
a power of 2, modular reductions modulo R correspond to taking the lower bits
while divisions by R correspond to taking the higher bits. One verifies that −m <
β < m and β = R(xy) mod m, so β equals xy in Montgomery representation.

The Chosen Parameters In the implementation described in this paper we
take L = 28 and r = 10. Thus, we can handle integers up to around 280 bits. To
fill up each multiprocessor with enough threads to effectively hide the instruction
latency, we choose a block size of 256 threads, which is in charge of computing
eight 280-bit arithmetic operations at a time. This means that we have an 8-way
modular multiplier per multiprocessor. This also means that we can have up to 32
threads in the computation of one 280-bit arithmetic operation. We use up to 28
threads in the computation of the most intensive arithmetic operation, namely,
the Montgomery multiplication. We need 3 integer multiplications here: one to
obtain x′y′, one to obtain α, and the third to obtain β. The multiplications are
implemented using 28 threads, each of which is responsible for cross-multiplying
7 limbs from x′ with 4 from y′. The reason why we choose this topology is to
avoid bank conflicts and race conditions in reading from and writing to shared
memory. We note that a bank conflict can still occur when the memory addresses
accessed by threads from a half warp do not fall evenly onto 16 banks, so we
need to carefully arrange x′ and y′ from different curves in shared memory and
pad when necessary.

10 Bernstein, Chen, Cheng, Lange, and Yang

4.3 Theoretical Performance Analysis

In this section, we estimate the performance of a GTX 280. This GPU has 240
cores running at 1.296 GHz, each of which can deliver two floating-point opera-
tions per clock cycle via the MAD instruction, which multiplies two floating-point
numbers and then adds a third floating-point number.

As we have mentioned in Section 4.2, each thread is responsible for cross-
multiplying the limbs in a 7-by-4 region. In the inner loop of a big-integer
multiplication without carry, each thread needs to load these numbers into
registers (11 loads from fast on-die memory), multiply and accumulate them
into temporary storage (28 MAD instructions), and then appropriately accu-
mulate the result back to a region shared by all 32 threads (10 load-and-adds,
10 syncthreads to prevent compiler from reordering the instructions, plus 10
stores). So it would take about 75 instructions per thread, including overhead,
to complete such a vanilla multiplication. A partial parallel carry takes about
7 instructions by properly manipulating floating-point arithmetic instructions,
and we need two partial carries in order to bring the value in each limb to its
normal range. Furthermore, in Montgomery reduction we need a full carry for
an intermediate result of twice the length, so we essentially need 4 full carries in
each modular multiplication, resulting in 56 extra instructions per thread. This
gives an estimate of 281 instructions per modular multiplication.

5 Fast ECM on a GPU

We now describe our implementation of the ECM computation on GPUs using
the high-throughput modular arithmetic described in the previous section. Recall
that the speed bottleneck of ECM is scalar multiplication on an elliptic curve
modulo m and that the factorization of m involves this computation on many
curves.

Applications such as the number-field sieve add a further dimension in that
factorizations of many auxiliary numbers are needed. We decided to use the
parallelism of the GPU to handle many curves for a given auxiliary integer
which thus can be stored in shared memory. All processors follow the same series
of instructions which is a scalar multiplication on the respective curve modulo
the same m and with the same scalar s. Different auxiliary factorizations can
be handled by different GPUs in parallel since no communication is necessary
in the NFS computation; for other parameter choices, e.g. smaller numbers m
or GPUs with even more processors, one can also consider handling multiple
integers on one GPU. For the rest of this section we consider one fixed m and s.

The CPU first prepares the curve parameters (including the coordinates of
the starting point) in an appropriate format and passes them to the GPU for
scalar multiplication, whose result will be returned by the GPU. The CPU then
does the gcd computation to determine whether we have found any factors.

Our implementation of modular arithmetic in essence turns a multiprocessor
on a GPU into an 8-way modular arithmetic unit (MAU) that is capable of

ECM on Graphics Cards 11

Fig. 1. Explicit formulas for DBL-DBL.

Step MAU 1 MAU 2

1 A=X2
1 B=Y 2

1 S
2 X1=X1 + Y1 C=A + B a
3 X1=X2

1 Z1=Z2
1 S

4 X1=X1 − C Z1=Z1 + Z1 a
5 B=B −A Z1=Z1 − C a
6 X1=X1 × Z1 Y1=B × C M
7 A=X1 ×X1 Z1=Z1 × C M
8 Z1=Z2

1 B=Y 2
1 S

9 Z1=Z1 + Z1 C=A + B a
10 B=B −A X1=X1 + Y1 a
11 Y1=B × C X1=X1 ×X1 M
12 B=Z1 − C X1=X1 − C a
13 Z1=B × C X1=X1 ×B M

4M+3S+6a

carrying out 8 modular arithmetic operations simultaneously. How to map our
elliptic-curve computation onto this array of 8-way MAUs on a GPU is of crucial
importance.

We have explored two different approaches to use the 8-way MAUs we have
implemented. The first one is straightforward: we compute on 8 curves in parallel,
each of which uses a dedicated MAU. This approach results in 2 KB of working
memory per curve, barely enough to store the curve parameters (including the
base point) and the coordinates of the intermediate point. Besides the base point,
we cannot cache any other points, which implies that the scalar multiplication
can use only a non-adjacent form (NAF) representation of s. So we need to
compute log2 s doublings and on average (log2 s)/3 additions to compute [s]P̃ .

In the second approach, we combine 2 MAUs to compute the scalar multipli-
cation on a single curve. As mentioned in Sections 2 and 4, our implementation
uses Montgomery representation of integers, and thus it does not benefit from
multiplications with small values. In particular, multiplications with the curve
coefficient d take the same time as general multiplications. We provide the base
point and all precomputed points (if any) in affine coordinates, so all curve addi-
tions are mixed additions. Inspecting the explicit formulas, one notices that both
addition and doubling require an odd number of multiplications/squarings. In
order to avoid idle multiplication cycles, we have developed new parallel formulas
that pipeline two group operations. The scalar multiplication can be composed
of the building blocks DBL-DBL (doubling followed by doubling), mADD-DBL
(mixed addition followed by doubling) and DBL-mADD. Note that there are
never two subsequent additions. At the very end of the scalar multiplication,
one might encounter a single DBL or mADD, in that case 1 processor is idle in
the final multiplication.

12 Bernstein, Chen, Cheng, Lange, and Yang

Fig. 2. Explicit formulas for mADD-DBL.

Step MAU 1 MAU 2

1 B=x2 × Z1 C=y2 × Z1 M
2 A=X1 × Y1 Z1=B × C M
3 E=X1 −B F=Y1 + C a
4 X1=X1 + C Y1=Y1 + B a
5 E=E × F Y1=X1 × Y1 M
6 F=A + Z1 B=A− Z1 a
7 E=E −B Y1=Y1 − F a
8 Z1=E × Y1 X1=E × F M
9 Y1=Y1 ×B A=X1 ×X1 M

10 Z1=Z2
1 B=Y 2

1 S
11 Z1=Z1 + Z1 C=A + B a
12 B=B −A X1=X1 + Y1 a
13 Y1=B × C X1=X1 ×X1 M
14 B=Z1 − C X1=X1 − C a
15 Z1=B × C X1=X1 ×B M

7M+1S+7a

The detailed formulas are given in Fig. 1, Fig. 2, and Fig. 3. The input to
all algorithms is the intermediate point, given in projective coordinates (X1 :
Y1 : Z1); the algorithms involving additions also take a second point in affine
coordinates (x2, y2) as input. The variables x2, y2 are read-only; the variables
X1, Y1, Z1 are modified to store the result. We have tested the formulas against
those in the EFD [9] and ensured that there would be no concurrent reads/writes
by testing the stated version and the one with the roles of MAU 1 and MAU
2 swapped. The horizontal lines indicate the beginning of the second operation.
There are no idle multiplication stages and only in DBL-mADD there is a wait
stage for an addition; another addition stage is used for a copy, which can be
implemented as an addition Z1 = X1 + 0. So the pipelined algorithms achieve
essentially perfect parallelism.

We note that in our current implementation, concurrent execution of a squar-
ing and a multiplication does not result in any performance penalty since squar-
ing is implemented as multiplication of the number by itself. Even if squarings
could be executed somewhat faster than general multiplications the performance
loss is minimal, e.g., instead of needing 3M+4S per doubling, the pipelined DBL-
DBL formulas need 4M+3S per doubling.

We also kept the number of extra variables to a minimum. The pipelined
versions need 1 extra variable compared to the versions on a single processor
but now two processors share the computation. This frees up enough memory
so that we can store the 8 points P̃ , [3]P̃ , [5]P̃ , . . . , [15]P̃ per curve. We store
these points in affine coordinates using only 2 Z/m elements’ worth of storage
space. With these precomputations we can use a signed-sliding-window method

ECM on Graphics Cards 13

Fig. 3. Explicit formulas for DBL-mADD.

Step MAU 1 MAU 2

1 A=X2
1 B=Y 2

1 S
2 X1=X1 + Y1 C=A + B a
3 X1=X2

1 Z1=Z2
1 S

4 X1=X1 − C Z1=Z1 + Z1 a
5 B=B −A Z1=Z1 − C a
6 X1=X1 × Z1 Y1=B × C M
7 Z1=Z1 × C A=X1 × Y1 M
8 B=x2 × Z1 C=y2 × Z1 M
9 E=X1 −B F=Y1 + C a

10 X1=X1 + C Y1=Y1 + B a
11 E=E × F Z1=B × C M
12 F=A + Z1 B=A− Z1 a
13 E=E −B Z1=X1 a
14 A=Z1 × Y1 X1=E × F M
15 A=A− F a
16 Z1=E ×A Y1=A×B M

6M+2S+8a

to compute [s]P̃ . This reduces the number of mixed additions to an average of
(log2 s)/6 (and worst case of (log2 s)/5).

6 Experimental Results

We summarize the experimental results in Tables 1 and 2. Our experiments
consist of running stage-1 ECM with B1 ranging from 210 to 220 on integers m of
280 bits on various CPUs and GPUs. For CPU experiments, we run GMP-ECM,
the state-of-the-art implementation of ECM. Details on the implementation on
the GPUs are given in Sections 4 and 5.

Note that for some GPUs, we have serial and parallel ECM implementations,
in which case both are presented in the table. We are unable to make parallel
ECM to run on G80 and G92 because they do not have enough registers to
accommodate the more complicated control code. The bottommost row repre-
sents the situation in which we use CPUs and GPUs simultaneously for ECM
computations.

For each implementation we derive two sets of performance numbers based on
cycle-accurate measurements of ECM execution time: the per-second throughput
of modular multiplication, and the per-second throughput of elliptic-curve scalar
multiplication. In some GPU experiments we are unable to obtain such cycle-
accurate measurement when B1 is too large because of overflow in the built-in
clock cycle counter. However, we have verified that for a fixed coprocessor, the
modular-multiplication throughput roughly remains the same for different B1’s

14 Bernstein, Chen, Cheng, Lange, and Yang

Table 1. Performance results of stage-1 ECM.

Coprocessor #Cores
Freq Rmax Mulmods Curves

(GHz) (GFLOPS) (106/sec) (1/sec)

CHES 2008 [45] (scaled) 96 1.2 230.4 26.81

8800 GTS (G80) 96 1.2 230.4 7.51 57.30
8800 GTS (G92) 128 1.625 416.0 13.64 104.14
GTX 260 192 1.242 476.9 14.97 119.05
GTX 280 240 1.296 622.1 19.53 155.29

Core 2 Duo E6850 2 3.0 48.0 11.19 107.14
Core 2 Quad Q6600 4 2.4 76.8 17.91 171.42
Core 2 Quad Q9550 4 2.83 90.7 21.77 208.39

GTX 260 (parallel) 192 1.242 476.9 16.61 165.58
GTX 280 (parallel) 240 1.296 622.1 22.66 216.78

Q6600+GTX 280×2 63.23 604.99

and can be used to accurately predict the scalar-multiplication throughput when
multiplied by the number of modular multiplications executed in each scalar
multiplication. Therefore, in Table 1 we only report the result obtained with
B1 = 8192, the largest B1 for which we have obtained cycle-accurate measure-
ments in all experiments — except for the modular-multiplication throughput
of 8800 GTS (both G80 and G92), where the measurement is done using the
clock cycle counter on the CPU, and therefore it also includes the overhead of
setting up the computation and returning the computed result. For elliptic-curve
scalar multiplications, this overhead is negligible. But for modular multiplica-
tions, this overhead can be significant, so we use B1 = 1048576 when calculating
the modular-multiplication throughput.

In Table 1, the first column lists the coprocessors. The next three columns list
their specifications: number of cores, clock frequency, and theoretical maximal
arithmetic throughput. Note that this throughput figure tends to underestimate
CPU’s computational power while overestimating GPU’s because CPUs have
wider data paths while GPUs suffer from lower degree of instruction-level paral-
lelism. The next two columns give the actual performance numbers derived from
measurements.

We note that the first row in Table 1 does not correspond to any experiments
we have performed. It is extrapolated based on the result of Szerwinski and
Güneysu, published in CHES 2008 [45]. In their result, the scalar in the scalar
multiplications is 224 bits long, whereas in our experiments, it is 11797 bits long.
Therefore, we have scaled their result by 11797/224 to fit into our context. We
also note that their modulus is a special prime, which leads to faster modular
reduction and that it has only 224 bits, as opposed to 280 in our implementations.
We did not account for this difference in the performance figure stated. In spite
of that, our implementation on the same platform achieves a significantly higher
throughput of more than twice the number of curves per second.

ECM on Graphics Cards 15

In Section 4.3 we estimated that a modular multiplication on the GTX 280
would consume 281 instructions. Dividing the Rmax of the GTX 280 in Table 1
by the achieved modular multiplication throughput, we see that in the imple-
mentation each modular multiplication requires about 27454 floating-point op-
erations, which can be delivered by 13727 GPU instructions. Given that we use
32 threads to compute one single modular multiplication, each thread gets to ex-
ecute about 429 instructions per modular multiplication. This number is about
1.5 times the instruction budget we derived before. We think the difference is
due to the fact that there are other minor operations associated with each mod-
ular multiplication such as modular additions and subtractions, as well as other
managerial operations like data movement and address calculations.

Table 2. Price-performance results of stage-1 ECM.

Coprocessor
Component-wise System-wise

Cost performance/cost Cost performance/cost
(�) (1/(sec·�)) (�) (1/(sec·�))

8800 GTS (G80) 119 0.48 1006 0.1139
8800 GTS (G92) 178 0.59 1124 0.1853
GTX 260 250 0.48 1268 0.1878
GTX 280 400 0.39 1568 0.1981

Core 2 Duo E6850 200 0.54 972 0.1102
Core 2 Quad Q6600 185 0.93 957 0.1791
Core 2 Quad Q9550 325 0.64 1097 0.1900

GTX 260 (parallel) 250 0.66 1268 0.2612
GTX 280 (parallel) 400 0.54 1568 0.2765

Q6600+GTX 280×2 985 0.61 1889 0.3203

Table 2 shows price-performance figures. For each processor it states the
cheapest list price pulled from the online retail giant NewEgg.com (on September
3, 2008), which in turn gives the per-US-dollar scalar-multiplication throughput
listed in the next column. This performance-cost ratio can be misleading because
one could not possibly compute ECM with a bare CPU or GPU — one would
definitely need a complete computer system with a motherboard, power supply,
etc. Therefore, we give the per-US-dollar scalar-multiplication throughput for
entire ECM computing systems, based on the advice given by a web site for
building computer systems of better performance-cost ratio [6]. The baseline
configuration consists of one dual-PCIe motherboard and one 750 GB hard drive
packed in a desktop enclosure with a built-in 430-Watt power supply and several
cooling fans. For CPU systems, we install the CPU under consideration with its
price updated from NewEgg.com if necessary, plus 8 GB of ECC RAM and a
cheap video card. In contrast, for GPU systems, we install two identical graphic
cards since the motherboard can take two video cards. We also add a 700-Watt
power supply in order to provide enough power for the two graphic cards, plus

16 Bernstein, Chen, Cheng, Lange, and Yang

a lower-priced Celeron CPU with only 2 GB of ECC RAM. This is justified
because we use GPUs for ECM computation and thus only use the CPU for light
managerial tasks. Finally, the configuration in the last row has both CPU and
GPU working as the ECM computing engine. Unsurprisingly this achieves the
best performance-cost ratio since the cost of the supporting hardware is shared
by both CPU and GPUs. Also not surprisingly, multi-socket motherboards with
Opterons and Xeons are simply too expensive.

From Table 2, we can see that although the Core 2 Quad Q6600 has an un-
beatably high performance-cost ratio as a component — there is often such a
“sweet spot” in market pricing for a high-end-but-not-quite-highest part, espe-
cially toward the end of its life — the configuration of two GTX 280’s actually
achieves a higher performance-cost ratio system-wise, not to mention that it can
be aided by a CPU to achieve an even better performance-cost ratio. To our
knowledge, this is the first GPU implementation of elliptic-curve computations
in which the GPU results are better in the number of scalar multiplications per
dollar and per second.

References

1. — (no editor), 13th IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM 2005), 17–20 April 2005, Napa, CA, USA, IEEE Computer
Society, 2005. ISBN 0-7695-2445-1. See [43].

2. Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen K. Lenstra, Dag Arne
Osvik, A Kilobit Special Number Field Sieve Factorization, in Asiacrypt 2007 [31]
(2007), 1–12. Cited in §1, §1.

3. A. O. L. Atkin, Francois Morain, Finding suitable curves for the elliptic curve
method of factorization, Mathematics of Computation 60 (1993), 399–405. ISSN
0025-5718. MR 93k:11115. URL: http://www.lix.polytechnique.fr/~morain/

Articles/articles.english.html. Cited in §2.2.
4. Friedrich Bahr, Michael Boehm, Jens Franke, Thorsten Kleinjung, Subject: rsa200

(2005). URL: http://www.crypto-world.com/announcements/rsa200.txt. Cited
in §1.

5. Friedrich Bahr, Jens Franke, Thorsten Kleinjung, Discrete logarithms in GF(p)
– 160 digits (2007). URL: http://www.nabble.com/Discrete-logarithms-in-GF
(p)-----160-digits-td8810595.html. Cited in §1.

6. Daniel J. Bernstein, How to build the 2007.12.03 standard workstation. URL:
http://cr.yp.to/hardware/build-20071203.html. Cited in §6.

7. Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, Christiane Peters,
Twisted Edwards Curves, in Africacrypt [46] (2008), 389–405. URL: http://

eprint.iacr.org/2008/013. Cited in §2.2.
8. Daniel J. Bernstein, Peter Birkner, Tanja Lange, Christiane Peters, ECM using

Edwards curves (2008). URL: http://eprint.iacr.org/2008/016. Cited in §2,
§2.2, §2.2, §2.2.

9. Daniel J. Bernstein, Tanja Lange, Explicit-formulas database (2008). URL: http://
hyperelliptic.org/EFD. Cited in §2.2, §5.

10. Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic
curves, in Asiacrypt 2007 [31] (2007), 29–50. URL: http://cr.yp.to/papers.

html#newelliptic. Cited in §2.2, §2.2.

ECM on Graphics Cards 17

11. Dan Boneh (editor), Advances in Cryptology — CRYPTO 2003, 23rd Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 17–21,
2003, Lecture Notes in Computer Science, 2729, Springer, 2003. ISBN 3-540-40674-
3. See [42].

12. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Paul C. Leyland, Walter M.
Lioen, Peter L. Montgomery, Brian Murphy, Herman te Riele, Paul Zimmermann,
Factorization of RSA-140 Using the Number Field Sieve, in Asiacrypt 1999 [33]
(1999), 195–207. Cited in §1.

13. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter M. Lioen, Peter L.
Montgomery, Brian Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gérard
Guillerm, Paul C. Leyland, Joël Marchand, Francois Morain, Alec Muffett, Chris
Putnam, Craig Putnam, Paul Zimmermann, Factorization of a 512-Bit RSA Mod-
ulus, in Eurocrypt 2000 [40] (2000), 1–18. Cited in §1, §1.

14. Debra L. Cook, John Ioannidis, Angelos D. Keromytis, Jake Luck, CryptoGraphics:
Secret Key Cryptography Using Graphics Cards, in CT-RSA 2005 [36] (2005), 334–
350. Cited in §3.

15. Debra L. Cook, Angelos D. Keromytis, CryptoGraphics: Exploiting Graphics Cards
For Security, Advances in Information Security, 20, Springer, 2006. ISBN 978-0-
387-29015-7. Cited in §3.

16. James Cowie, Bruce Dodson, R. Marije Elkenbracht-Huizing, Arjen K. Lenstra,
Peter L. Montgomery, Jörg Zayer, A World Wide Number Field Sieve Factoring
Record: On to 512 Bits, in Asiacrypt 1996 [28] (1996), 382–394. Cited in §1.

17. Cynthia Dwork (editor), Advances in Cryptology — CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20–
24, 2006, Lecture Notes in Computer Science, 4117, Springer, 2006. ISBN 3-540-
37432-9. See [27].

18. Harold M. Edwards, A normal form for elliptic curves, Bulletin of the Ameri-
can Mathematical Society 44 (2007), 393–422. URL: http://www.ams.org/bull/
2007-44-03/S0273-0979-07-01153-6/home.html. Cited in §2.2.

19. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata,
Colin Stahlke, SHARK: A Realizable Special Hardware Sieving Device for Factoring
1024-Bit Integers, in CHES 2005 [41] (2005), 119–130. Cited in §1, §1.

20. Kris Gaj, Soonhak Kwon, Patrick Baier, Paul Kohlbrenner, Hoang Le, Mohammed
Khaleeluddin, Ramakrishna Bachimanchi, Implementing the Elliptic Curve Method
of Factoring in Reconfigurable Hardware, in CHES 2006 [23] (2006), 119–133. Cited
in §1.

21. Steven D. Galbraith (editor), Cryptography and Coding, 11th IMA International
Conference, Cirencester, UK, December 18–20, 2007, Lecture Notes in Computer
Science, 4887, Springer, 2007. ISBN 978-3-540-77271-2. See [37].

22. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Scalable Hard-
ware for Sparse Systems of Linear Equations, with Applications to Integer Factor-
ization, in CHES 2005 [41] (2005), 131–146. Cited in §1.

23. Louis Goubin, Mitsuru Matsui (editors), Cryptographic Hardware and Embedded
Systems — CHES 2006, 8th International Workshop, Yokohama, Japan, October
10–13, 2006, Lecture Notes in Computer Science, 4249, Springer, 2006. ISBN 3-
540-46559-6. See [20].

24. Florian Hess, Sebastian Pauli, Michael E. Pohst (editors), Algorithmic Number
Theory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23–28,
2006, Lecture Notes in Computer Science, 4076, Springer, Berlin, 2006. ISBN 3-
540-36075-1. See [47].

18 Bernstein, Chen, Cheng, Lange, and Yang

25. Huseyin Hisil, Kenneth Wong, Gary Carter, Ed Dawson, Faster group operations
on elliptic curves (2007). URL: http://eprint.iacr.org/2007/441. Cited in §2.2.

26. Antoine Joux, Reynald Lercier, Improvements to the general number field sieve
for discrete logarithms in prime fields. A comparison with the Gaussian integer
method, Mathematics of Computation 72 (2003), 953–967. Cited in §1.

27. Antoine Joux, Reynald Lercier, Nigel P. Smart, Frederik Vercauteren, The Number
Field Sieve in the Medium Prime Case, in Crypto 2006 [17] (2006), 326–344. Cited
in §1.

28. Kwangjo Kim, Tsutomu Matsumoto (editors), Advances in Cryptology —
ASIACRYPT ’96, International Conference on the Theory and Applications of
Cryptology and Information Security, Kyongju, Korea, November 3–7, 1996, Lec-
ture Notes in Computer Science, 1163, Springer, 1996. ISBN 3-540-61872-4. See
[16].

29. Thorsten Kleinjung, Cofactorisation strategies for the number field sieve and an
estimate for the sieving step for factoring 1024-bit integers, in Proceedings of
SHARCS’06 (2006). URL: http://www.math.uni-bonn.de/people/thor/cof.ps.
Cited in §1, §1.

30. Neal Koblitz, Alfred Menezes, Pairing-Based Cryptography at High Security Levels,
in Coding and Cryptography [44] (2005), 13–36. Cited in §1.

31. Kaoru Kurosawa (editor), Advances in cryptology — ASIACRYPT 2007, 13th In-
ternational Conference on the Theory and Application of Cryptology and Informa-
tion Security, Kuching, Malaysia, December 2–6, 2007, Lecture Notes in Computer
Science, 4833, Springer, 2007. See [2], [10].

32. Chi-Sung Laih (editor), Advances in Cryptology — ASIACRYPT 2003, 9th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, November 30 – December 4, 2003, Lecture Notes in Com-
puter Science, 2894, Springer, 2003. ISBN 3-540-20592-6. See [35].

33. Kwok-Yan Lam, Eiji Okamoto, Chaoping Xing (editors), Advances in Cryptology
— ASIACRYPT ’99, International Conference on the Theory and Applications of
Cryptology and Information Security, Singapore, November 14–18, 1999, Notes in
Computer Science, 1716, Springer, 1999. ISBN 3-540-66666-4. See [12].

34. Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Annals
of Mathematics 126 (1987), 649–673. ISSN 0003-486X. MR 89g:11125.
URL: http://links.jstor.org/sici?sici=0003-486X(198711)2:126:3<649:

FIWEC>2.0.CO;2-V. Cited in §1.
35. Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James

Hughes, Paul C. Leyland, Factoring Estimates for a 1024-Bit RSA Modulus, in
Asiacrypt 2003 [32] (2003), 55–74. Cited in §1.

36. Alfred J. Menezes (editor), Topics in Cryptology — CT-RSA 2005, The Cryptog-
raphers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February
14–18, 2005, Lecture Notes in Computer Science, 3376, Springer, 2005. ISBN 3-
540-24399-2. See [14].

37. Andrew Moss, Dan Page, Nigel P. Smart, Toward Acceleration of RSA Using 3D
Graphics Hardware, in Cryptography and Coding 2007 [21] (2007), 364–383. Cited
in §3.

38. Elisabeth Oswald, Pankaj Rohatgi (editors), Cryptographic Hardware and Em-
bedded Systems — CHES 2008, 10th International Workshop, Washington, D.C.,
USA, August 10–13, 2008, Lecture Notes in Computer Science, 5154, Springer,
2008. ISBN 978-3-540-85052-6. See [45].

ECM on Graphics Cards 19

39. Jan Pelzl, Martin Šimka, Thorsten Kleinjung, Jens Franke, Christine Priplata,
Colin Stahlke, Miloš Drutarovský, Viktor Fischer, Christof Paar, Area-time effi-
cient hardware architecture for factoring integers with the elliptic curve method,
IEE Proceedings on Information Security 152 (2005), 67–78. Cited in §1.

40. Bart Preneel (editor), Advances in Cryptology — EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14–18, 2000, Lecture Notes in Computer Science, 1807,
Springer, 2000. ISBN 3-540-67517-5. See [13].

41. Josyula R. Rao, Berk Sunar (editors), Cryptographic Hardware and Embedded Sys-
tems — CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 –
September 1, 2005, Lecture Notes in Computer Science, 3659, Springer, 2005. ISBN
3-540-28474-5. See [19], [22].

42. Adi Shamir, Eran Tromer, Factoring Large Numbers with the TWIRL Device, in
Crypto 2003 [11] (2003), 1–26. Cited in §1.

43. Martin Šimka, Jan Pelzl, Thorsten Kleinjung, Jens Franke, Christine Priplata,
Colin Stahlke, Miloš Drutarovský, Viktor Fischer, Hardware Factorization Based
on Elliptic Curve Method, in FCCM 2005 [1] (2005), 107–116. Cited in §1.

44. Nigel P. Smart (editor), Cryptography and Coding, 10th IMA International Confer-
ence, Cirencester, UK, December 19–21, 2005, Lecture Notes in Computer Science,
3796, Springer, 2005. See [30].

45. Robert Szerwinski, Tim Güneysu, Exploiting the Power of GPUs for Asymmetric
Cryptography, in CHES 2008 [38] (2008), 79–99. Cited in §3.1, §1, §6.

46. Serge Vaudenay (editor), Progress in Cryptology — AFRICACRYPT 2008, First
International Conference on Cryptology in Africa, Casablanca, Morocco, June 11–
14, 2008, Lecture Notes in Computer Science, 5023, Springer, 2008. ISBN 978-3-
540-68159-5. See [7].

47. Paul Zimmermann, Bruce Dodson, 20 Years of ECM, in ANTS 2006 [24] (2006),
525–542. Cited in §2.

48. Paul Zimmermann, 50 largest factors found by ECM. URL: http://www.loria.fr/
~zimmerma/records/top50.html. Cited in §1.

