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Abstract. This paper introduces EECM-MPFQ, a fast implementation
of the elliptic-curve method of factoring integers. EECM-MPFQ uses
fewer modular multiplications than the well-known GMP-ECM software,
takes less time than GMP-ECM, and finds more primes than GMP-
ECM. The main improvements above the modular-arithmetic level are
as follows: (1) use Edwards curves instead of Montgomery curves; (2) use
extended Edwards coordinates; (3) use signed-sliding-window addition
chains; (4) batch primes to increase the window size; (5) choose curves
with small parameters and base points; (6) choose curves with large
torsion.

1 Introduction

Factorization of integers is one of the most studied problems in algorithmic num-
ber theory and cryptology. One of the best general factorization methods avail-
able is the Elliptic-Curve Method (ECM), introduced by Hendrik W. Lenstra,
Jr., in [28] twenty years ago. ECM plays an important role in factoring the “ran-
dom” integers of interest to number theorists: it is not as fast as trial division
and Pollard’s rho method for finding tiny prime factors but it is the method of
choice for finding medium-size prime factors. ECM also plays an important role
in factoring the “hard” integers of interest to cryptologists: those integers are
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attacked by sieving methods, which use ECM to find medium-size prime factors
of auxiliary integers. ECM can also be used directly to find “large” prime factors;
the current record, reported in [41], was the discovery by Dodson of a 222-bit
factor of the 1266-bit number 10381 + 1.

Implementations of ECM are available in most computer-algebra packages
and have been the subject of countless papers. The state-of-the-art implemen-
tation is GMP-ECM, described in detail in the paper [42] by Zimmermann and
Dodson.

We have built a new ECM implementation, “EECM-MPFQ”, that uses fewer
modular multiplications than GMP-ECM, takes less time than GMP-ECM, and
finds more primes than GMP-ECM. Our first prototype of EECM-MPFQ was
“GMP-EECM”, a program that added various improvements to GMP-ECM; we
thank Zimmermann et al. for making their software freely available!

In this paper we present the background and speed results for EECM-MPFQ.
To simplify verification and reuse of our results we have made published the
EECM-MPFQ software at http://eecm.cr.yp.to and placed it into the public
domain.

1.1. Representations of elliptic curves. Elliptic curves can be expressed in
many forms, and elliptic-curve computations can be carried out in many ways.
Two fast options reigned supreme for twenty years of elliptic-curve factoring,
elliptic-curve primality proving, and (in large characteristic) elliptic-curve cryp-
tography:

• Short Weierstrass curves y2 = x3 + a4x + a6, with Jacobian coordinates
(X : Y : Z) representing (X/Z2, Y/Z3), were the representation of choice for
most computations.

• Montgomery curves By2 = x3 + Ax2 + x, with Montgomery coordinates
(X : Z) representing two points (X/Z,± · · · ), were the representation of
choice for single-scalar multiplication, and in particular for stage 1 of ECM.

The picture changed in 2007 with the advent of Edwards curves. A sequence
of papers [10], [8], [11], [12], and [26] showed that, for cryptographic appli-
cations, Edwards curves involve significantly fewer multiplications than short
Weierstrass curves in Jacobian coordinates, and — for sufficiently large scalar
multiplications — fewer multiplications than Montgomery curves in Montgomery
coordinates. Note that larger scalars benefit from larger windows, reducing the
number of additions per bit for Edwards coordinates but not for Montgomery
coordinates.

1.2. Contributions of this paper. In this paper we analyze the impact of
Edwards curves on ECM, not just in multiplication counts but also in real-world
software speeds.

Section 2 discusses the group law on Edwards curves and twisted Edwards
curves, and reviews various coordinate systems for Edwards curves. Our pro-
totype GMP-EECM used twisted inverted Edwards coordinates, and EECM-
MPFQ uses extended Edwards coordinates. Section 3 analyzes points of small
order on Edwards curves. Sections 4 and 5 discuss the use of Edwards curves

http://eecm.cr.yp.to
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inside ECM. Our announcement of GMP-EECM in January 2008 marked the
first time that Edwards curves had been demonstrated to achieve software speed
records.

A large portion of this paper is devoted to explaining which curves we use
in EECM-MPFQ. Curves having 12 or 16 torsion points over Q are guaranteed
to have 12 or 16 as divisors of their group orders modulo primes (of good reduc-
tion), improving the smoothness chance of the group orders and thus improving
the success chance of ECM. We show how to use analogous improvements for
Edwards curves; even better, we find new curves with large torsion group, small
curve parameters, and small non-torsion points.

Section 6 explains how to construct Edwards curves having torsion group
Z/12Z or Z/2Z×Z/8Z over Q; the symmetry of Edwards curves simplifies the
constructions. Section 6 also shows that twisted Edwards curves cannot have
torsion group Z/2Z × Z/6Z over Q, and that twisted Edwards curves with
torsion group Z/12Z or Z/2Z × Z/8Z over Q cannot have curve parameter
a = −1. Section 7, adapting a construction of Atkin and Morain from [2] to
the Edwards context, explains how to construct an infinite family of Edwards
curves having torsion group Z/2Z×Z/8Z and (as required for ECM) an explicit
non-torsion point. Section 8 describes how we found better choices of Edwards
curves to use in EECM-MPFQ; each of these curves has torsion group Z/12Z or
Z/2Z× Z/8Z, an explicit non-torsion point, and small (i.e., fast) parameters.

Section 9 reports measurements of ECM success probabilities, demonstrat-
ing the importance of a large torsion group. Section 10 reports the overall ef-
fectiveness of EECM-MPFQ when parameters are chosen sensibly; for example,
it shows that one curve finds 13.414% of all 30-bit primes in just 3065 modular
multiplications.

Acknowledgments. Thanks to Paul Zimmermann for his detailed comments
and suggestions regarding a previous version of this paper.

2 Edwards curves

This section reviews twisted Edwards curves, and Edwards curves as a special
case; the set of points on a twisted Edwards curve in affine, projective, inverted,
extended, and completed forms; the Edwards addition law and a dual addition
law, together turning the completed twisted Edwards curve into a group; and
the speeds of addition and doubling in various representations.

For a collection of explicit formulas and operation counts for elliptic curves
in various representations we refer to the Explicit-Formulas Database [9].

2.1. Edwards curves and twisted Edwards curves. Let k be a field in
which 2 6= 0, and let a, d be distinct nonzero elements of k. The twisted Edwards
curve E E,a,d is given by

E E,a,d : ax2 + y2 = 1 + dx2y2.

An Edwards curve is a twisted Edwards curve in which a = 1; i.e., a curve of the
form x2 + y2 = 1 + dx2y2 where d ∈ k \ {0, 1}.
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If ad̄ = ād then the two curves E E,a,d and E E,ā,d̄ are isomorphic over
k(
√
a/ā) and therefore quadratic twists over k. An isomorphism is given by

(x, y) 7→ (x̄, ȳ) = (
√
a/āx, y). In particular, the twisted Edwards curve E E,a,d is

a quadratic twist of the Edwards curve E E,1,d/a.
Five slightly different ways to build a set of points from an Edwards curve,

or more generally a twisted Edwards curve, have appeared in the literature.
The simplest is the set of affine points

{
(x, y) ∈ A2 : ax2 + y2 = 1 + dx2y2

}
.

Four others, with various theoretical and computational advantages, are the
projective, inverted, extended, and completed sets discussed below.

2.2. The Edwards addition law. The Edwards addition law on E E,a,d is given
in affine coordinates by

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

By inserting appropriate denominators one obtains the Edwards addition law
in projective coordinates, inverted coordinates, extended coordinates, and com-
pleted coordinates.

The Edwards addition law is strongly unified; i.e., the same formulas can
also be used for generic doublings. The point (0, 1) is the neutral element of the
addition law. The negative of a point (x1, y1) is (−x1, y1).

The Edwards addition law for E E,a,d was studied by Bernstein, Birkner, Joye,
Lange, and Peters in [7], generalizing from the case a = 1 studied by Bernstein
and Lange in [10], generalizing from the case a = 1, d = c4 studied by Edwards
in [22], generalizing from the case a = 1, d = −1 studied by Euler and Gauss.

Edwards actually used the form x2 +y2 = c2(1+x2y2). Edwards showed that
every elliptic curve over Q can be written in this normal form over an extension
of Q. Replacing (x, y) with (cx, cy) produces the curve E E,1,c4 ; this scaling turns
out to save time in computations. The further generalizations to E E,1,d and to
E E,a,d allow more curves over Q to be handled at similar speeds.

2.3. The dual addition law. Hisil, Wong, Carter, and Dawson in [26] intro-
duced the addition law

(x1, y1), (x2, y2) 7→
(
x1y1 + x2y2

y1y2 + ax1x2
,
x1y1 − x2y2

x1y2 − y1x2

)
.

on E E,a,d. This dual addition law produces the same output as the Edwards
addition law when both are defined, but the exceptional cases are different. In
particular, the dual addition law never works for doublings: if (x1, y1) = (x2, y2)
then the second output coordinate (x1y1−x2y2)/(x1y2− y1x2) is 0/0. The dual
addition law nevertheless has some important advantages, as discussed below.

2.4. Projective points. The projective twisted Edwards curve is{
(X : Y : Z) ∈ P2 : aX2Z2 + Y 2Z2 = Z4 + dX2Y 2

}
.
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The projective points are the affine points (x1, y1), embedded as usual into P2

by (x1, y1) 7→ (x1 : y1 : 1), and two extra singular points at infinity, namely
(0 : 1 : 0) and (1 : 0 : 0).

Fast projective addition and doubling formulas, starting from the Edwards
addition law and eliminating multiplications in various ways, were introduced
for Edwards curves in [10] and were generalized to twisted Edwards curves in [7].
Adding a generic pair of points uses just 10M+1S+2D: i.e., 10 field multiplica-
tions, 1 field squaring, and 2 multiplications by curve parameters (specifically 1
by d and 1 by a). Doubling takes just 3M+4S+1D with the following formulas:

B = (X1 + Y1)2; C = X2
1 ; D = Y 2

1 ; E = C +D; H = Z2
1 ;

J = E − 2H; X3 = (B − E) · J ; Y3 = E · (C −D); Z3 = E · J.

These doubling formulas are used in EECM-MPFQ.

2.5. Inverted points. The inverted twisted Edwards curve is{
(X : Y : Z) ∈ P2 : aY 2Z2 +X2Z2 = X2Y 2 + dZ4

}
.

The inverted points are the affine points (x1, y1) other than (0,±1) and (±1, 0),
embedded into P2 by (x1, y1) 7→ (1/x1 : 1/y1 : 1); two extra points if d is
a square, namely (±

√
d : 0 : 1); two extra points if d/a is a square, namely

(0 : ±
√
d/a : 1); and two singular points at infinity, namely (0 : 1 : 0) and

(1 : 0 : 0). Note that a generic inverted point (X1 : Y1 : Z1) corresponds to the
affine point (Z1/X1, Z1/Y1).

Fast inverted addition and doubling formulas were introduced for Edwards
curves in [11] and for twisted Edwards curves in [7]. Adding a generic pair of
points costs only 9M + 1S + 2D, saving 1M compared to projective Edwards
coordinates. A doubling costs 3M + 4S + 2D, losing 1D compared to projective
Edwards coordinates.

These formulas were used in the prototype GMP-EECM.

2.6. Extended points. The extended twisted Edwards curve is{
(X : Y : Z : T ) ∈ P3 : aX2 + Y 2 = Z2 + dT 2 and XY = ZT

}
.

The extended points are the affine points (x1, y1), embedded into P3 by (x1, y1) 7→
(x1 : y1 : 1 : x1y1); two extra points at infinity if d is a square, namely
(0 : ±

√
d : 0 : 1); and two extra points at infinity if d/a is a square, namely

(1 : 0 : 0 : ±
√
a/d).

Hisil, Wong, Carter, and Dawson in [26] introduced extended addition for-
mulas costing only 9M + 1D:

A = X1 ·X2, B = Y1 · Y2, C = Z1 · T2, D = T1 · Z2,

E = D + C, F = (X1 − Y1) · (X2 + Y2) +B −A, G = B + aA,

H = D − C, X3 = E · F, Y3 = G ·H, Z3 = F ·G, T3 = E ·H.

These formulas save 1S by switching from inverted coordinates to extended
coordinates, and an extra 1D by switching from the Edwards addition law to
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the dual addition law. These formulas are used in EECM-MPFQ. Hisil et al. also
introduced addition formulas costing only 8M for the case a = −1; but we show
in Section 6 that the case a = −1 sacrifices torsion.

A doubling in extended coordinates loses 1M for computing the extended
output coordinate T3. However, the doubling formulas make no use of the ex-
tended input coordinate T1, so if the input is not used for anything else then the
operation producing that input can skip the computation of T1, saving 1M.

Scalar multiplication can be carried out as a series of operations on an accu-
mulator P : doublings replace P by 2P , and double-and-add operations replace
P by 2P +Q. If P is in projective coordinates and the precomputed points Q are
in extended coordinates then doubling costs 3M+ 4S+ 1D and double-and-add
costs (3M + 4S + 1D) + (9M + 1D), with the 1M loss in doubling cancelled by
the 1M savings in addition. This mixture of projective coordinates and extended
coordinates was suggested in [26] and is used in EECM-MPFQ.

2.7. Completed points. The completed twisted Edwards curve is

E E,a,d =
{

((X : Z), (Y : T )) ∈ P1 ×P1 : aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2
}
.

The completed points are the affine points (x1, y1), embedded as usual into
P1 × P1 by (x1, y1) 7→ ((x1 : 1), (y1 : 1)); two extra points at infinity if d is a
square, namely ((1 : ±

√
d), (1 : 0)); and two extra points at infinity if d/a is a

square, namely ((1 : 0), (±
√
a/d : 1)).

The completed curve maps isomorphically to the extended curve via the Segre
embedding ((X : Z), (Y : T )) 7→ (XT : Y Z : ZT : XY ) of P1 × P1 into P3. It
maps onto the projective curve via ((X : Z), (Y : T )) 7→ (XT : Y Z : ZT ), but
this map is not an isomorphism: it sends the two points ((1 : ±

√
d), (1 : 0)) to

(0 : 1 : 0), and sends the two points ((1 : 0), (±
√
a/d : 1)) to (1 : 0 : 0). The

completed curve also maps onto the inverted curve via ((X : Z), (Y : T )) 7→
(Y Z : XT : XY ), but this map sends the two points ((0 : 1), (±1 : 1)) to
(1 : 0 : 0), and sends the two points ((±1 : 1), (0 : 1)) to (0 : 1 : 0).

EECM-MPFQ uses the completed curve as an intermediate output of dou-
blings (costing 4S + 1D) and additions (costing 5M + 1D); it then maps the
completed point to a projective point (costing 3M) or to an extended point
(costing 4M) as desired. One should not think that all addition formulas in
the literature naturally factor through the completed curve: in particular, a de-
tour through the completed curve would sacrifice 1M in the inverted Edwards
addition law and in the projective dual addition law.

2.8. Addition with small inputs. There are two compatible ways to choose
“small” curves that save more time in scalar multiplication. First, choosing small
curve parameters a, d speeds up any multiplications by those parameters inside
addition formulas and doubling formulas. Second, choosing a small base point
P1 for scalar multiplication speeds up multiplications by the coordinates of P1,
and to some extent speeds up multiplications by the coordinates of [3]P1 etc.

Let P1 = (x1, y1) be a rational point on the Edwards curve EE,1,d̄, and assume
that x1, y1, d̄ have small height, i.e., small numerators and denominators. Then
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d̄ can be written in the form d/a, where a is a small square and d is a small
integer. Now the point (x1/

√
a, y1) is on the isomorphic curve E E,a,d and can be

written with small integer coordinates on the inverted curve, the extended curve,
etc., saving time in addition. A small inverted point (X1 : Y1 : Z1) replaces 4M
by 4D, where the 4D are 1 multiplication by each of the small integers X1, Y1,
X1 + Y1, and Z1; similarly, a small extended point replaces 5M by 5D.

2.9. The Edwards group. If a = 1 and d is not a square then, by [10, Theorem
3.3], the affine Edwards addition law is complete: the denominators 1+dx1x2y1y2

and 1−dx1x2y1y2 are always nonzero, and the affine points (x1, y1) on the curve
form a group.

However, if d is a square then the addition law is not necessarily a group
law: there can be pairs (x1, y1) and (x2, y2) where 1 + dx1x2y1y2 = 0 or 1 −
dx1x2y1y2 = 0. Even worse, there can be pairs (x1, y1) and (x2, y2) for which
1 + dx1x2y1y2 = 0 = x1y2 + y1x2 or 1− dx1x2y1y2 = 0 = y1y2 − ax1x2. Switch-
ing from affine coordinates to projective or inverted or extended or completed
coordinates does not allow the Edwards addition law to add such points.

There is nevertheless a standard group law for the completed curve E E,a,d in
P1 × P1. One way to define the group law is through a correspondence to the
traditional chord-and-tangent group on an equivalent Weierstrass curve; but it
is simpler to directly define a group law + : E E,a,d×E E,a,d → E E,a,d. Bernstein
and Lange showed in [13] that the Edwards addition law and the dual addition
law form a complete system of addition laws for E E,a,d: any pair of input points
that cannot be added by the Edwards addition law can be added by the dual
addition law.

The following theorem summarizes the results from [13]. Section 3 uses this
group law to characterize points of small order in E E,a,d, and subsequent sections
of this paper use this characterization to construct Edwards curves with large
Q-torsion subgroups.

Theorem 2.10. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k. Fix P1, P2 ∈ E E,a,d(k). Write P1 as ((X1 : Z1), (Y1 : T1)) and write P2

as ((X2 : Z2), (Y2 : T2)). Define

X3 = X1Y2Z2T1 +X2Y1Z1T2,

Z3 = Z1Z2T1T2 + dX1X2Y1Y2,

Y3 = Y1Y2Z1Z2 − aX1X2T1T2,

T3 = Z1Z2T1T2 − dX1X2Y1Y2.

and
X ′3 = X1Y1Z2T2 +X2Y2Z1T1,

Z ′3 = aX1X2T1T2 + Y1Y2Z1Z2,

Y ′3 = X1Y1Z2T2 −X2Y2Z1T1,

T ′3 = X1Y2Z2T1 −X2Y1Z1T2.

Then X3Z
′
3 = X ′3Z3 and Y3T

′
3 = Y ′3T3. Furthermore, at least one of the following

cases occurs:
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• (X3, Z3) 6= (0, 0) and (Y3, T3) 6= (0, 0). Then P1 +P2 = ((X3 : Z3), (Y3 : T3)).
• (X ′3, Z

′
3) 6= (0, 0) and (Y ′3 , T

′
3) 6= (0, 0). Then P1+P2 = ((X ′3 : Z ′3), (Y ′3 : T ′3)).

If P1 = P2 then the first case occurs.

3 Points of small order on EE,a,d

The complete set of addition laws from [13] (presented in the previous section)
enables us to investigate the order of any point. In particular, it has often been
stated that the points at infinity on an Edwards curve blow up to two points of
order 2 and two points of order 4, e.g. in [7] in the context of exceptional points
of the map between a twisted Edwards curve and a Montgomery curve. With the
complete set of addition laws we can prove all statements purely in the context
of Edwards curves.

This section characterizes all points of order 2, 3, and 4, and states conditions
on the parameters of the twisted Edwards curve for such points to exist. These
results are used later to construct curves with large Q-torsion subgroups. This
section also characterizes points of order 8 relevant to later sections.

The following theorem gives a complete study of points of order 2 and 4 in
E E,a,d.

Theorem 3.1. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k. The following points are in E E,a,d(k) and have the stated orders.

Points of order 2:
The point ((0 : 1), (−1 : 1)) has order 2.
If a/d is a square in k then the points ((1 : 0), (±

√
a/d : 1)) have order 2.

There are no other points of order 2.
Points of order 4 doubling to ((0 : 1), (−1 : 1)):
If a is a square in k then the points ((1 : ±

√
a), (0 : 1)) have order 4 and

double to ((0 : 1), (−1 : 1)).
If d is a square in k then the points ((1 : ±

√
d), (1 : 0)) have order 4 and

double to ((0 : 1), (−1 : 1)).
There are no other points doubling to ((0 : 1), (−1 : 1)).
Points of order 4 doubling to ((1 : 0), (±

√
a/d : 1)): Assume that s ∈ k

satisfies s2 = a/d.
If s and −s/a are squares in k then the points ((±

√
−s/a : 1), (±

√
s : 1)),

where the signs may be chosen independently, have order 4 and double to ((1 :
0), (s : 1)).

There are no other points doubling to ((1 : 0), (s : 1)).

Proof. Doublings can always be computed by X3, Z3, Y3, T3 from Theorem 2.10:
in other words, all curve points ((X : Z), (Y : T )) have (2XY ZT,Z2T 2 +
dX2Y 2) 6= (0, 0) and (Y 2Z2 − aX2T 2, Z2T 2 − dX2Y 2) 6= (0, 0), so

[2]((X : Z), (Y : T ))

= ((2XY ZT : Z2T 2 + dX2Y 2), (Y 2Z2 − aX2T 2 : Z2T 2 − dX2Y 2)).

In particular:
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• [2]((0 : 1), (−1 : 1)) = ((0 : 1), (1 : 1)).
• [2]((1 : 0), (±

√
a/d : 1)) = ((0 : . . .), (−a : −d(a/d))) = ((0 : 1), (1 : 1)).

• [2]((1 : ±
√
a), (0 : 1)) = ((0 : . . .), (−a : a)) = ((0 : 1), (−1 : 1)).

• [2]((1 : ±
√
d), (1 : 0)) = ((0 : . . .), (d : −d)) = ((0 : 1), (−1 : 1)).

• [2]((±
√
−s/a : 1), (±

√
s : 1)) = ((. . . : 1 + d(−s/a)s), (s − a(−s/a) : 1 −

d(−s/a)s)) = ((1 : 0), (s : 1)) since d(s/a)s = s2d/a = 1.

To see that there is no other point of order 2 or 4, observe first that every point
((X : Z), (Y : T )) on E E,a,d with X = 0 or Y = 0 or Z = 0 or T = 0 is either
((0 : 1), (1 : 1)) or one of the points doubled above. The only remaining points are
affine points ((x : 1), (y : 1)) with x 6= 0 and y 6= 0. The double of ((x : 1), (y : 1))
is ((2xy : 1 + dx2y2), (y2− ax2 : 1− dx2y2)); but 2xy 6= 0, so this double cannot
be ((0 : 1), (1 : 1)), so ((x : 1), (y : 1)) cannot have order 2. For the same reason,
the double cannot be ((0 : 1), (−1 : 1)). The only remaining case is that the
double is ((1 : 0), (s : 1)) where s2 = a/d. Then ax2 + y2 = 1 + dx2y2 = 0 so
ax2 = −y2; and y2−ax2 = s(1−dx2y2), so 2y2 = y2−ax2 = s(1−dx2y2) = 2s,
so y = ±

√
s, and finally ax2 = −s so x = ±

√
−s/a. ut

Later we will study Edwards curves over the rationals Q for which ((1 :
±
√
a), (0 : 1)) is on the curve. In this case the only points of order 8 double to

either these points or to ((1 : ±
√
d), (1 : 0)).

Theorem 3.2. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k.

Points of order 8 doubling to ((1 : ±
√
a), (0 : 1)): If r ∈ k satisfies

r2 = a then any element of E E,a,d(k) doubling to ((1 : r), (0 : 1)) can be written
as ((x8 : 1), (rx8 : 1)) for some x8 ∈ k satisfying adx4

8 − 2ax2
8 + 1 = 0.

Conversely, if r, x8 ∈ k satisfy r2 = a and adx4
8 − 2ax2

8 + 1 = 0 then the two
points ((±x8 : 1), (±rx8 : 1)), with matching signs, have order 8 and double to
((1 : r), (0 : 1)). If also d is a square in k then the two points ((1 : ±rx8

√
d), (1 :

±x8

√
d)), with matching signs, have order 8, double to ((1 : ±

√
a), (0 : 1)), and

are different from ((±x8 : 1), (±rx8 : 1)). There are no other points doubling to
((1 : r), (0 : 1)).

Points of order 8 doubling to ((1 : ±
√
d), (1 : 0)): If s ∈ k satisfies

s2 = d then any element of E E,a,d(k) doubling to ((1 : s), (1 : 0)) can be written
as ((x̄8 : 1), (1 : sx̄8)) for some x̄8 ∈ k satisfying adx̄4

8 − 2dx̄2
8 + 1 = 0.

Conversely, if s, x̄8 ∈ k satisfy s2 = d and adx̄4
8 − 2dx̄2

8 + 1 = 0, then
the two points ((±x̄8 : 1), (1 : ±sx̄8)), with matching signs, have order 8 and
double to ((1 : s), (1 : 0)). If also a is a square in k then the two points ((1 :
±sx8

√
a), (±x8

√
a : 1)), with matching signs, have order 8, double to ((1 : s), (1 :

0)), and are different from ((±x̄8 : 1), (1 : ±sx̄8)). There are no other points
doubling to ((1 : s), (1 : 0)).

Proof. Every point with a zero coordinate has order at most 4 by Theorem 3.1,
so any point of order 8 has the form ((x8 : 1), (y8 : 1)), with x8 6= 0 and y8 6= 0,
and with double ((2x8y8 : 1 + dx2

8y
2
8), (y2

8 − ax2
8 : 1− dx2

8y
2
8)).



10 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

Part 1: If the double is ((1 : r), (0 : 1)) then y2
8 − ax2

8 = 0 and 2x8y8r =
1 + dx2

8y
2
8 = ax2

8 + y2
8 = 2ax2

8 = 2r2x2
8. Cancel 2x8r to see that y8 = rx8.

Hence adx4
8 − 2ax2

8 + 1 = dx2
8y

2
8 − (1 + dx2

8y
2
8) + 1 = 0 and the original point is

((x8 : 1), (rx8 : 1)).
Conversely, if r, x8 ∈ k satisfy r2 = a and adx4

8 − 2ax2
8 + 1 = 0, then the

point ((x8 : 1), (rx8 : 1)) is on the curve since ax2
8 + (rx8)2 = 2ax2

8 = adx4
8 + 1 =

1 + dx2
8(rx8)2, and it doubles to ((2x8rx8 : 1 + dx2

8r
2x2

8), (r2x2
8 − ax2

8 : . . .)) =
((2x8rx8 : 2ax2

8), (0 : . . .)) = ((1 : r), (0 : 1)).
The other points doubling to ((1 : r), (0 : 1)) are ((x : 1), (rx : 1)) for

other x ∈ k satisfying adx4 − 2ax2 + 1 = 0. If d is not a square in k then
adx4− 2ax2 + 1 = adx4− (adx2

8 + 1/x2
8)x2 + 1 = (x− x8)(x+ x8)(adx2− 1/x2

8),
with adx2 − 1/x2

8 irreducible, so the only points doubling to ((1 : r), (0 : 1)) are
((±x8 : 1), (±rx8 : 1)). If d is a square in k then adx4− 2ax2 + 1 = (x− x8)(x+
x8)(rx

√
d− 1/x8)(rx

√
d+ 1/x8) so the only points doubling to ((1 : r), (0 : 1))

are ((±x8 : 1), (±rx8 : 1)) and ((1 : ±rx8

√
d), (1 : ±x8

√
d)). These points are

distinct: otherwise ±rx2
8

√
d = 1 so adx4

8 = 1 so 2ax2
8 = 2 so ax2

8 = 1 so y8 = 0
from the curve equation, contradiction.

Part 2: If the double of ((x̄8 : 1), ȳ8 : 1)) is ((1 : s), (1 : 0)) then 1−dx̄2
8ȳ

2
8 = 0

and 2x̄8ȳ8s = 1 + dx̄2
8ȳ

2
8 = 2 so ȳ8 = 1/(sx̄8). Hence adx̄4

8 − 2dx̄2
8 + 1 = (ax̄2

8 −
2 + ȳ2

8)dx̄2
8 = 0 and the original point is ((x̄8 : 1), (1 : sx̄8)).

Conversely, if s, x̄8 ∈ k satisfy s2 = d and adx̄4
8−2dx̄2

8 +1 = 0, then the point
((x̄8 : 1), (1 : sx̄8)) is on the curve since dx̄2

8(ax̄2
8+bary2

8) = dx̄2
8(ax̄2

8+1/(s2x̄2
8)) =

adx̄4
8 + 1 = 2dx̄2

8 = dx̄2
8 + dx̄4

8/x̄
2
8 = dx̄2

8(1 + dx̄2
8/(s

2x̄2
8)) = dx̄2

8(1 + dx̄2
8ȳ

2
8)).

The point doubles to ((2sx̄2
8 : s2x̄2

8 + dx̄2
8), (1 − as2x̄4

8 : s2x̄2
8 − dx̄2

8)) = ((1 :
s), (1− adx̄4

8 : s2x̄2
8 − s2x̄2

8)) = ((1 : s), (1 : 0)).
The other points doubling to ((1 : s), (1 : 0)) are ((x : 1), (1 : sx)) for

other x ∈ k satisfying adx4 − 2dx2 + 1 = 0. If a is not a square in k then
adx4− 2dx2 + 1 = adx4− (adx̄2

8 + 1/x̄2
8)x2 + 1 = (x− x̄8)(x+ x̄8)(adx2− 1/x̄2

8),
with adx2 − 1/x̄2

8 irreducible, so the only points doubling to ((1 : s), (1 : 0)) are
((±x̄8 : 1), (1 : ±sx̄8)). If a is a square in k then adx4− 2dx2 + 1 = (x− x̄8)(x+
x̄8)(sx

√
a− 1/x̄8)(sx

√
a+ 1/x̄8) so the only points doubling to ((1 : s), (1 : 0))

are ((±x̄8 : 1), (1 : ±sx̄8)) and ((1 : ±sx̄8
√
a)), (±x̄8

√
a : 1)). These points are

distinct: otherwise ±sx̄2
8

√
a = 1 so adx̄4

8 = 1 so 2dx̄2
8 = 2 so dx̄2

8 = 1 so x̄8 = 0
from the curve equation, contradiction. ut

Theorem 3.3. Fix a field k with char(k) 6= 2. Fix distinct nonzero elements
a, d ∈ k. If x3, y3 ∈ k satisfy ax2

3 +y2
3 = 1+dx2

3y
2
3 = −2y3 then ((x3 : 1), (y3 : 1))

is a point of order 3 on E E,a,d(k). Conversely, all points of order 3 on E E,a,d(k)
arise in this way.

Proof. Doublings can always be computed by X3, Z3, Y3, T3 from Theorem 2.10.
Observe that ((x3 : 1), (y3 : 1)) ∈ E E,a,d(k) since ax2

3 + y2
3 = 1 + dx2

3y
2
3 . Now

((x3 : 1), (y3 : 1)) = ((2x3y3 : 1 + dx2
3y

2
3), (y2

3 − ax2
3 : 1− dx2

3y
2
3))

= ((2x3y3 : −2y3), (2y2
3 + 2y3 : 2y3 + 2))

= ((−x3 : 1), (y3 : 1))
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so ((x3 : 1), (y3 : 1)) has order dividing 3. It cannot have order 1 (since otherwise
x3 = 0 so y2

3 = 1 = −2y3), so it has order 3.
Conversely, consider any point P = ((X1 : Z1), (Y1 : T1)) of order 3 in

E E,a,d(k). The equation [2]P = −P then implies (2X1Y1Z1T1 : Z2
1T

2
1 +dX2

1Y
2
1 ) =

(−X1 : Z1). Every point in E E,a,d with a zero coordinate has order 1, 2, or 4 by
Theorem 3.1, so X1, Z1, Y1, T1 6= 0. Define x3 = X1/Z1 and y3 = Y1/T1. Then
P = ((x3 : 1), (y3 : 1)); furthermore (2x3y3 : 1 + dx2

3y
2
3) = (−x3 : 1) and x3 6= 0

so −2y3 = 1 + dx2
3y

2
3 = ax2

3 + y2
3 . ut

4 Using Edwards curves in ECM stage 1

This section discusses “stage 1” of ECM. It begins by reviewing the general idea
of stage 1 and the state-of-the-art strategies used in GMP-ECM to perform the
elliptic-curve computations in stage 1. It then analyzes the speedups obtained
from using Edwards curves.

4.1. Overview of stage 1. Stage 1 of ECM tries to factor a positive integer n
as follows. Choose an elliptic curve E defined over Q. Choose a rational function
φ : E → Q that has a pole at the neutral element of E; for example choose φ as
the Weierstrass x-coordinate. Choose a non-torsion element P ∈ E(Q). Choose
a positive integer s with many small prime factors. Choose a sequence of ad-
ditions, subtractions, multiplications, and divisions that, if carried out over Q,
would compute φ([s]P ), where [s]P denotes the sth multiple of P in E(Q). Com-
pute φ([s]P ) modulo n by carrying out this sequence of additions, subtractions,
multiplications, and divisions modulo n. Hope for an impossible division modulo
n. An attempt to divide by a nonzero nonunit modulo n immediately reveals a
factor of n; an attempt to divide by 0 modulo n is not quite as informative but
usually allows a factor of n to be obtained without much extra work.

If n has a prime divisor q such that [s]P is the neutral element of E(Z/qZ)
then the stage-1 ECM computation will involve an impossible division modulo n,
usually revealing a factor of n. This occurs, in particular, whenever s is a multiple
of the group size #E(Z/qZ). As E varies randomly, #E(Z/qZ) varies randomly
(with some subtleties in its distribution; see, e.g., [29]) in the Hasse interval
[q− 2

√
q+ 1, q+ 2

√
q+ 1]. What makes ECM useful is that a surprisingly small

s, allowing a surprisingly fast computation of [s]P , is a multiple of a surprisingly
large percentage of the integers in the Hasse interval, and is a multiple of the
order of P modulo q with (conjecturally) an even larger probability. See Section 9
for detailed statistics.

For example, one could try to factor n as follows. Choose the curve E :
y2 = x3 − 2, the Weierstrass x-coordinate as φ, the point (x, y) = (3, 5),
and the integer s = 420. Choose the following strategy to compute the x-
coordinate of [420](3, 5): use the standard affine-coordinate doubling formu-
las to compute [2](3, 5), then [4](3, 5), then [8](3, 5); use the standard affine-
coordinate addition formulas to compute [12](3, 5); continue similarly through
[2](3, 5), [4](3, 5), [8](3, 5), [12](3, 5), [24](3, 5), [48](3, 5), [96](3, 5), [192](3, 5),
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[384](3, 5), [408](3, 5), [420](3, 5). Carry out these computations modulo n, hop-
ing for a division by a nonzero nonunit modulo n.

The denominator of the x-coordinate of [420](3, 5) in E(Q) has many small
prime factors: 2, 3, 5, 7, 11, 19, 29, 31, 41, 43, 59, 67, 71, 83, 89, 109, 163, 179,
181, 211, 223, 241, 269, 283, 383, 409, 419, 433, 523, 739, 769, 811, 839, etc.
If n shares any of these prime factors then the computation of [420](3, 5) will
encounter an impossible division modulo n. To verify the presence of (e.g.) the
primes 769, 811, and 839 one can observe that [420](3, 5) is the neutral element
in each of the groups E(Z/769Z), E(Z/811Z), E(Z/839Z); the order of (3, 5)
turns out to be 7, 42, 35 respectively. Note that the group orders are 819, 756,
and 840, none of which divide 420.

4.2. The standard choice of s. Pollard in [34, page 527] suggested choosing
s as “the product of all the primes pi ≤ L each to some power ci ≥ 1. There
is some freedom in the choice of the ci but the smallest primes should certainly
occur to some power higher than the first.”

Pollard’s prime bound “L” is now called B1. One possibility is to choose,
for each prime π ≤ B1, the largest power of π in the interval [1, n + 2

√
n + 1].

Then [s]P is the neutral element in E(Z/qZ) if and only if the order of P is
“B1-smooth”, i.e., if and only if the order has no prime divisors larger than B1.
This possibility is theoretically pleasing but clearly suboptimal.

Brent in [15, Section 5] said that “in practice we choose” the largest power
of π in the interval [1, B1] “because this significantly reduces the cost of a trial
without significantly reducing the probability of success.” GMP-ECM uses the
same strategy; see [42, page 529].

4.3. The standard prime-by-prime strategy. Pollard in [34, page 527] said
that one “can choose between using the primes pi in succession or computing P
in advance and performing a single power operation.” Pollard’s “P” is s in the
notation of this paper.

As far as we know, all ECM implementations use the first strategy, working
with one prime at a time. Brent in [15, Section 5] wrote “Actually, E [i.e., s in
the notation of this paper] is not computed. Instead . . . repeated operations of
the form P := P k [i.e., [k]P in the notation of this paper], where k . . . is a prime
power.” Montgomery in [30, page 249] wrote “It is unnecessary to compute R
[i.e., s in the notation of this paper] explicitly.” Zimmermann and Dodson in
[42, page 529] wrote “That big product is not computed as such” and presented
the prime-by-prime loop used in GMP-ECM.

4.4. The standard elliptic-curve coordinate system. Chudnovsky and
Chudnovsky in [17, Section 4] wrote “The crucial problem becomes the choice of
the model of an algebraic group variety, where computations mod p are the least
time consuming.” They presented explicit formulas for computations on several
different shapes of elliptic curves.

Montgomery in [30, Section 10.3.1] introduced what are now called “Mont-
gomery coordinates”: a point (x1, y1) on the elliptic curve By2 = x3 +Ax2 +x is
represented as a pair (X1 : Z1) such that X1/Z1 = x1. This representation does
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not distinguish (x1, y1) from (x1,−y1), so it does not allow addition, but it does
allow “differential addition,” i.e., computation of P+Q given P,Q, P−Q. In par-
ticular, Montgomery presented explicit formulas to compute P, [2k]P, [(2k+1)]P
from P, [k]P, [k+ 1]P using 6M + 4S + 1D, or 5M + 4S + 1D if P is given with
Z1 = 1, or 4M + 4S + 1D if P is a very small point such as (X1 : Z1) = (3, 5).
One can find earlier formulas for the same computation in [17, formula (4.19)],
but Montgomery’s formulas are faster.

As far as we know, all subsequent ECM implementations have used Mont-
gomery coordinates. In particular, GMP-ECM uses Montgomery coordinates for
stage 1, with “PRAC,” a particular differential addition chain introduced by
Montgomery. Zimmermann and Dodson in [42, page 532, Figure 2] report a to-
tal cost of 2193683 differential additions to multiply an elliptic-curve point by
2 · 3 · 5 · 7 · 11 · · · 999983 ≈ 21440508.1677 in Montgomery coordinates. By adding
a few counters to the source code of GMP-ECM we observed that GMP-ECM’s
stage 1, with B1 = 106 and hence s ≈ 21442098.6271, used 12982280 multiplica-
tions modulo n for 2196070 elliptic-curve differential additions, of which only
194155 were doublings.

4.5. Speedups in EECM-MPFQ. EECM-MPFQ breaks with stage-1 tradi-
tion in three ways:

• EECM-MPFQ uses twisted Edwards curves ax2 + y2 = 1 + dx2y2 with ex-
tended Edwards coordinates with φ = 1/x whereas GMP-ECM uses Mont-
gomery curves with Montgomery coordinates. See below for performance
results. Our prototype GMP-EECM used inverted twisted Edwards coordi-
nates.
• EECM-MPFQ and GMP-EECM handle the prime factors π of s in batches,

whereas GMP-ECM handles each prime factor separately. Specifically, GMP-
EECM computed the product t of a batch, replaced P with [t]P , and then
moved on to the next batch. EECM-MPFQ always uses a single batch: it
computes the entire product s and then replaces P with [s]P . The large
batches save time, as discussed below; the computation of s takes negligible
time.
• EECM-MPFQ uses “signed sliding fractional window” addition chains. Our

prototype GMP-EECM used “signed sliding window” addition chains. These
chains compute P 7→ [s]P using only 1 doubling and ε additions for each bit
of s. Here ε converges to 0 as s increases in length; this is why larger batches
save time. The savings are amplified by the fact that an addition is somewhat
more expensive than a doubling. Note that these chains are not compatible
with Montgomery coordinates; they are shorter than any differential addition
chain can be.

EECM-MPFQ follows tradition in its choice of s. Our experiments have not
found significant speedups from other choices of s: for example, allowing prime
powers in the larger interval [1, B1.5

1 ] has negligible extra cost when B1 is large,
but it also appears to have negligible benefit.

The addition chains used in EECM-MPFQ are the chains Cm(s) defined in
[12, Section 3]. Given B1, EECM-MPFQ computes s, computes Cm(s) for various
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choices of the addition-chain parameter m, and keeps the lowest-cost chain that
it finds in a simple measure of cost. (Variations in the cost measure do not lead
to noticeably better chains.) The total time spent on this computation is small:
for example, under a second (on the CPU described below) for B1 = 1048576.
The resulting chain is reused for many curves and many inputs n.

Table 4.1 shows the actual number of elliptic-curve doublings and additions
used by stage 1 of EECM-MPFQ. Table 4.1 also shows the actual number of field
squarings, field multiplications, and field additions used by stage 1 of EECM-
MPFQ. Recall that each doubling uses 3M + 4S while each addition uses 9M.
The table shows that EECM-MPFQ uses only 8.84 multiplications per bit of s for
B1 = 64, only 8.42 multiplications per bit for B1 = 512, only 7.91 multiplications
per bit for B1 = 16384, and only 7.61 multiplications per bit for B1 = 1048576.

For comparison, GMP-ECM uses approximately 9 multiplications for each
bit of s, as illustrated by the example with B1 = 106 above. As explained in
[42, Section 2] one cannot expect differential addition chains to use fewer than
6/ lg((1 +

√
5)/2) ≈ 8.64 multiplications per bit. Furthermore, only about one

third of GMP-ECM’s multiplications are squarings, while more than half of
EECM-MPFQ’s multiplications are squarings for B1 ≥ 16384. Even for the
most carefully chosen curves, with extremely small parameters and extremely
small base points, Montgomery’s formulas use at least 4M + 4S per bit.

4.6. Measurements of CPU cycles. GMP-ECM relies primarily on the GMP
integer-arithmetic library developed by Granlund et al., although for some CPUs
it replaces portions of GMP with its own assembly-language subroutines for
modular multiplication. EECM-MPFQ also uses GMP but performs almost all
modular arithmetic using the MPFQ library introduced by Gaudry and Thomé
in [24]. The tests described below used GMP 4.3.1 (released May 2009), GMP-
ECM 6.2.3 (released April 2009), and MPFQ 1.0rc1 (released September 2008),
all current at the time of this writing (November 2009).

A 1000-curve test of EECM-MPFQ took 2.8 million cycles per curve on
a single core of a 3.2GHz AMD Phenom II X4 (100f42) for a 240-bit n with
B1 = 1024 (and with d1 = 1, disabling “stage 2”). For comparison, a 1000-curve
test of GMP-ECM took 3.8 million cycles per curve on the same CPU for the
same 240-bit n with the same B1 (and with B2 = 1).

The improvement in speed from GMP-ECM to EECM-MPFQ is even larger
than what one would expect from comparing GMP-ECM’s 8512M + 4427S to
EECM-MPFQ’s 6363M+5892S. The obvious explanation is that MPFQ’s mod-
ular multiplications are faster than GMP’s (and GMP-ECM’s) modular multi-
plications; of course, the credit for this speedup belongs to Gaudry and Thomé.

Increasing B1 to 16384 increased the EECM-MPFQ time to 40 million cy-
cles per curve. There are 187307 modular multiplications per curve, specifically
92651M + 94656S; evidently each modular multiplication took only about 220
cycles. For comparison, increasing B1 to 16384 increased the GMP-ECM time
to 60 million cycles per curve for 210307 modular multiplications, specifically
138884M + 71423S.
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B1 b m
#DBL

b

#ADD

b

#S+#M

b

#S

b

#M

b

#a

b

8 10 5 0.800000 0.400000 10.100000 3.200000 6.900000 7.600000
12 15 3 0.933333 0.266667 9.533333 3.733333 5.800000 7.466667
16 20 5 0.900000 0.250000 9.000000 3.600000 5.400000 7.150000
24 33 3 0.939394 0.242424 9.030303 3.757576 5.272727 7.333333
32 48 11 0.916667 0.291667 9.229167 3.666667 5.562500 7.541667
48 69 7 0.956522 0.202899 8.652174 3.826087 4.826087 7.159420
64 90 9 0.977778 0.211111 8.844444 3.911111 4.933333 7.344444
96 130 15 0.969231 0.215385 8.792308 3.876923 4.915385 7.323077

128 184 15 0.978261 0.201087 8.706522 3.913043 4.793478 7.277174
192 275 29 0.985455 0.185455 8.600000 3.941818 4.658182 7.210909
256 363 15 0.988981 0.190083 8.658402 3.955923 4.702479 7.264463
384 557 27 0.991023 0.168761 8.472172 3.964093 4.508079 7.127469
512 743 27 0.993271 0.161507 8.418573 3.973082 4.445491 7.090175
768 1106 63 0.994575 0.150995 8.329114 3.978300 4.350814 7.024412

1024 1479 63 0.995943 0.145368 8.286004 3.983773 4.302231 6.993239
1536 2210 115 0.996833 0.138462 8.228054 3.987330 4.240724 6.950226
2048 2945 107 0.997623 0.131749 8.172156 3.990492 4.181664 6.907980
3072 4434 129 0.998647 0.124041 8.108029 3.994587 4.113442 6.860171
4096 5925 231 0.998650 0.120506 8.075949 3.994599 4.081350 6.835443
6144 8866 253 0.999098 0.114595 8.025603 3.996391 4.029213 6.796752
8192 11797 271 0.999322 0.111384 7.998135 3.997287 4.000848 6.775621

12288 17704 519 0.999492 0.105287 7.944306 3.997967 3.946340 6.733958
16384 23673 511 0.999620 0.101635 7.912263 3.998479 3.913784 6.709162
24576 35526 877 0.999719 0.097422 7.874965 3.998874 3.876091 6.680262
32768 47230 1019 0.999788 0.093966 7.844315 3.999153 3.845162 6.656490
49152 70828 1057 0.999859 0.090247 7.811303 3.999435 3.811868 6.630880
65536 94449 1847 0.999884 0.087698 7.788521 3.999534 3.788987 6.613188
98304 141805 2055 0.999922 0.084087 7.756278 3.999690 3.756588 6.588146

131072 189124 3079 0.999942 0.082057 7.738135 3.999767 3.738367 6.574052
196608 283651 4115 0.999958 0.078692 7.707947 3.999831 3.708117 6.550589
262144 378037 4639 0.999968 0.076815 7.691128 3.999873 3.691255 6.537516
393216 567462 8199 0.999977 0.073883 7.664799 3.999908 3.664890 6.517046
524288 756657 8187 0.999983 0.072121 7.648977 3.999931 3.649046 6.504745
786432 1134563 16383 0.999988 0.069733 7.627511 3.999951 3.627561 6.488054

1048576 1512566 16389 0.999991 0.067937 7.611370 3.999963 3.611407 6.475503

Table 4.1. Costs of computation of sP in EECM-MPFQ. The b column is the number
of bits in s = lcm {1, 2, . . . , B1}. #DBL and #ADD are the number of doublings and
additions in the addition chain Cm(s) selected by EECM-MPFQ. #S, #M, and #a are
the number of field squarings, field multiplications, and field additions used by these
elliptic-curve operations in extended Edwards coordinates. Per-curve setup costs and
precomputation costs are included in the field-operation counts.
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Increasing B1 to 65536 increased the EECM-MPFQ time to 162 million cy-
cles per curve. There are 735618 modular multiplications per curve, specifically
357866M+377752S. For comparison, increasing B1 to 65536 increased the GMP-
ECM time to 243 million cycles per curve for 842998 modular multiplications,
specifically 557257M + 285741S.

4.7. EECM vs. HECM. Chudnovsky and Chudnovsky in [17, Section 6] pro-
posed a genus-2 hyperelliptic-curve method of factoring, using “simple forms of
laws of addition on hyperelliptic surfaces, isogenous to the product of two elliptic
curves.” Recently, in [18], Cosset reported that streamlined genus-2 formulas by
Gaudry in [23] used only 189667 multiplications per elliptic curve (performed
as 379334 multiplications per genus-2 curve) for B1 = 16384, with the extra
advantage that approximately 75% of the multiplications are squarings. Cosset
quoted, for comparison, an earlier version of this paper that had reported 195111
multiplications per curve for GMP-EECM for B1 = 16384.

A closer look shows that the formulas in [23] and [18] actually use, for each
elliptic curve, 189667 multiplications plus approximately 189667 multiplications
by small constants. EECM-MPFQ uses a total of only 187307 multiplications per
elliptic curve, and the advantage grows as B1 grows. Furthermore, the elliptic
curves used in [18] are less effective than the elliptic curves used in EECM-
MPFQ, and in fact are less effective than the elliptic curves used in GMP-ECM,
according to the experiments described in [18, Section 3]. HECM is worth further
investigation, but in its current form is clearly less efficient than EECM.

5 Using Edwards curves in ECM stage 2

This section discusses “stage 2” of ECM, and the benefit of switching to Edwards
curves in stage 2.

5.1. Overview of stage 2. Recall that stage 1 hopes for n to have a prime
divisor q such that [s]P is the neutral element of E(Z/qZ).

Stage 2 hopes for n to have a prime divisor q such that [s]P has small prime
order in E(Z/qZ): specifically, order ` for some prime ` between B1 and B2.
Here B1 is the stage-1 parameter described in the previous section, and B2 is a
new stage-2 parameter.

The most obvious way to check for a small order of [s]P is a prime-by-prime
approach, computing [`s]P modulo n for each prime `.

If `′ is the next prime after ` then one can move from [`s]P to [`′s]P by
adding a precomputed point [(`′ − `)s]P . Computing all [`s]P in this way takes
about B2/ logB2−B1/ logB1 elliptic-curve additions modulo n: there are about
B2/ logB2−B1/ logB1 primes `, and the time for precomputation is quite small,
since the differences `′ − ` are generally quite small.

5.2. Standard speedup: Baby steps and giant steps. A better way to
check for a small order of [s]P is with the following baby-step-giant-step com-
putation. Fix a parameter d1 ∈ {2, 4, 6, . . .}, preferably a product of several dif-
ferent tiny primes. Choose a rational function ψ : E → Q satisfying ψ([js]P ) =



ECM using Edwards curves 17

ψ([−js]P ); for example choose ψ as the Weierstrass x-coordinate or the Edwards
y-coordinate. Compute

gcd

{
n,

∏
dB1/d1−1/2e≤i≤bB2/d1+1/2c

∏
1≤j≤d1/2

gcd {j,d1}=1

(ψ([id1s]P )− ψ([js]P ))

}
.

The idea here is as follows. Assume that ` is a prime between B1 and B2 not
dividing d1. Write ` as id1±j for some integers i, j with j ∈ {0, 1, . . . , d1/2}. Then
i is between B1/d1 − 1/2 and B2/d1 + 1/2, and gcd {j, d1} = gcd {`, d1} = 1. If
[s]P has order ` in E(Z/qZ) then [id1s]P = [∓js]P in E(Z/qZ) so the numerator
of ψ([id1s]P )− ψ([js]P ) is divisible by q.

In particular, the number of i’s is balanced with the number of j’s when
B2 −B1 ≈ d1ϕ(d1)/2, where ϕ is Euler’s totient function. The baby steps [js]P
and the giant steps [id1s]P use about ϕ(d1) elliptic-curve additions, while the
product of ψ([id1s]P )−ψ([js]P ) uses about ϕ(d1)2/4 multiplications modulo n.

For comparison, the prime-by-prime approach uses roughly d1ϕ(d1)/(4 log d1)
elliptic-curve additions. The baby-step-giant-step approach is an improvement
whenever an elliptic-curve addition costs more than about (ϕ(d1) log d1)/d1 mul-
tiplications.

Asymptotically, (ϕ(d1) log d1)/d1 reaches ∞, even when d1 is chosen as a
product of tiny primes. However, in practice, (ϕ(d1) log d1)/d1 is always below
4; for example, if d1 = 510510 = 2·3·5·7·11·13·17, then (ϕ(d1) log d1)/d1 ≈ 2.37.
The baby-step-giant-step approach is therefore faster than the prime-by-prime
approach.

5.3. Standard speedup: Fast polynomial arithmetic. If d1 is large then∏
i

∏
j(ψ([id1s]P )−ψ([js]P )) is more efficiently computed as

∏
i F (ψ([id1s]P ))

where F =
∏
j(t − ψ([js]P )) ∈ (Z/nZ)[t]. Standard fast-arithmetic algorithms

perform this computation in time (#{i} + #{j})1+o(1) rather than #{i}#{j}:
first compute F via a “product tree”; then compute the values F (ψ([id1s]P ))
for all i via a “remainder tree” or a “scaled remainder tree”; then multiply the
values. For details and further speedups see, e.g., [5]; [42, Section 3]; and [6,
Sections 12, 18].

5.4. Standard speedup: Higher-degree baby steps and giant steps. One
can replace [js]P and [id1s]P by, e.g., [j6s]P and [(id1)6s]P . The advantage of
this change is that one finds primes ` dividing (id1)6 ± j6, not just id1 ± j. If
id1 and j were uniformly distributed modulo ` then (id1)6 ± j6 would be more
than twice as likely as id1 ± j to be divisible by `. See [31, Section 5.3] for a
probability analysis.

The only disadvantage is that there are more elliptic-curve operations. GMP-
ECM computes [j6s]P for each integer j ∈ {1, 2, . . . , d1/2} by computing the
differences [((j + 1)6 − j6)s]P , the second differences [((j + 2)6 − 2(j + 1)6 +
j6)s]P , etc.; the sixth differences are constants [6!s]P , so GMP-ECM uses a
total of approximately 6(d1/2) elliptic-curve additions. More generally, GMP-
ECM computes [jeS]P for each integer j ∈ {1, 2, . . . , d1/2} using approximately
e(d1/2) elliptic-curve additions.
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One consequence of this generalization is that elliptic-curve operations cannot
be a negligible part of the time taken by a properly optimized stage 2, compared
to the time needed for computing the final product. If they were negligible then
increasing e would find a considerable number of additional primes at negligible
extra cost.

GMP-ECM actually uses De(j) instead of je. Here De is the degree-e “Dick-
son polynomial” defined by De(t−1/t) = te+(−1/t)e. The differences De(id1)±
De(j) have the same chance as (id1)e±je to be divisible by `, but are less closely
correlated than (id1)e ± je as (i, j) vary; see [31, Table 5.3.1].

5.5. The standard elliptic-curve coordinate system. GMP-ECM does not
use Montgomery coordinates in stage 2. Montgomery coordinates allow efficient
differential additions, but most of the additions involved in higher-degree steps
are not differential additions: they are sums where the differences are unknown.

GMP-ECM instead switches to affine coordinates (x, y). Addition in affine
coordinates involves 1I + 2M + 1S. For degree-e steps there are e additions to
perform in parallel; GMP-ECM combines eI into 1I + 3(e− 1)M. GMP-ECM’s
total cost for baby steps is therefore (d1/2)I + (5e− 3)(d1/2)M + e(d1/2)S.

5.6. Speedups in EECM-MPFQ. EECM-MPFQ uses higher-degree baby
steps and giant steps, with the same Dickson polynomials De used in GMP-
ECM, but changes the elliptic-curve computations in three ways:

• EECM-MPFQ skips the d1/2 − ϕ(d1)/2 values of j ∈ {1, 2, . . . , d1/2} that
have gcd {j, d1} > 1. It computes [De(j)s]P for the ϕ(d1)/2 values of j that
have gcd {j, d1} = 1 (and [De(id1)s]P for consecutive integers i). GMP-
ECM tries to do something similar, focusing on the d1/6 values of j in the
arithmetic progression (1+6Z)∩ [1, d1]; but d1/6 is considerably larger than
ϕ(d1)/2.
• EECM-MPFQ delays all inversions until the elliptic-curve computations are

finished. It computes the desired y-coordinates in one final batched division,
costing 1I+(4(#{i}+#{j})−3)M in total for the baby steps and the giant
steps.
• EECM-MPFQ performs each intermediate elliptic-curve addition in extended

Edwards coordinates, costing 9M. Occasionally an addition is a doubling
costing only 3M + 4S.

EECM-MPFQ computes the desired multiples of [s]P using a simple general-
purpose multi-scalar-multiplication algorithm described in [19, Section 4] with
credit to Bos and Coster. If n1 ≥ n2 ≥ · · · then the algorithm computes
[n1s]P, [n2s]P, . . . by recursively computing [(n1 − n2)s]P, [n2s]P, . . . and then
adding [n2s]P to [(n1 − n2)s]P . Actually, the Bos–Coster algorithm recursively
computes [(n1 mod n2)s]P, [n2s]P, . . . and then adds the appropriate multiple of
[n2s]P to [(n1 mod n2)s]P ; but this refinement is irrelevant in the typical case
that n1 < 2n2.

Table 5.1 reports the number of multiplications used inside elliptic-curve op-
erations in EECM-MPFQ’s stage 2, for various choices of d1 and e. The number
of multiplications is divided by #{i} + #{j} to produce each “cost” column.
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Cost Cost Cost Cost Cost
d1 B1 #{j} #{i} d1#{i} e = 1 e = 2 e = 3 e = 6 e = 12

30 60 4 4 120 18.75000 38.00000 57.12500 114.50000 242.75000
42 84 6 6 252 16.75000 33.41667 48.33333 106.16667 214.16667
60 120 8 8 480 15.81250 30.56250 43.50000 104.25000 204.31250
90 180 12 12 1080 14.87500 26.95833 41.95833 101.20833 205.83333

120 240 16 16 1920 14.40625 26.56250 38.37500 98.56250 200.09375
150 300 20 20 3000 14.12500 24.97500 39.57500 101.02500 201.15000
180 360 24 24 4320 13.93750 24.47917 37.41667 100.04167 201.10417
210 420 24 24 5040 14.33333 25.22917 39.10417 102.29167 205.41667
330 660 40 40 13200 13.91250 23.60000 37.43750 102.35000 204.27500
390 780 48 48 18720 13.65625 22.76042 36.64583 101.61458 202.30208
420 840 48 48 20160 13.65625 22.66667 36.64583 102.64583 204.17708
510 1020 64 64 32640 13.49219 22.42969 35.79688 101.04688 202.01563
630 1260 72 72 45360 13.43750 22.31250 36.38889 101.57639 204.45139
660 1320 80 80 52800 13.45625 22.06875 35.28750 100.76250 203.02500
780 1560 96 96 74880 13.32813 21.63542 34.71354 100.94792 201.58854
840 1680 96 96 80640 13.32813 22.05729 35.41667 99.11458 203.97917
990 1980 120 120 118800 13.30417 21.78333 35.47083 100.45833 201.63333

1050 2100 120 120 126000 13.26250 21.70417 35.80833 101.13333 203.32083
1260 2520 144 144 181440 13.21875 21.63194 34.44444 100.85069 203.19444
1470 2940 168 168 246960 13.18750 21.52381 34.43452 101.63988 202.43452
1680 3360 192 192 322560 13.16406 21.48958 34.05208 97.09896 201.84115
1890 3780 216 216 408240 13.14583 21.52315 34.37963 100.83796 201.42130
2100 4200 240 240 504000 13.13125 21.42292 33.68542 100.58542 201.77917
2310 4620 240 240 554400 13.18958 21.53542 34.43542 101.74792 203.80417
2520 5040 288 288 725760 13.10938 21.23785 33.33160 97.80035 201.67535
2730 5460 288 288 786240 13.15799 21.36285 33.78299 101.20660 202.51910
2940 5880 336 336 987840 13.09375 21.11905 33.21280 99.97619 200.79762
3150 6300 360 360 1134000 13.08750 21.16528 33.37639 100.29028 201.01528
3360 6720 384 384 1290240 13.08203 21.12370 33.06510 96.26432 200.13932
3570 7140 384 384 1370880 13.11719 21.27474 33.45052 100.72917 202.09635
3780 7560 432 432 1632960 13.07292 21.16898 33.15856 99.90856 200.72107
3990 7980 432 432 1723680 13.10532 21.34606 33.53356 100.72106 201.30440
4200 8400 480 480 2016000 13.06563 21.17708 33.02708 97.48021 200.33333
4290 8580 480 480 2059200 13.09479 20.99896 33.44896 100.30208 200.83958
4620 9240 480 480 2217600 13.09479 21.32708 33.43021 100.70521 202.04896

Table 5.1. Cost of elliptic-curve operations in stage 2 of EECM-MPFQ. Cost means
the number of multiplications divided by #{i}+ #{j}. Baby steps and giant steps are
included. Multiplications used for inversion are included. Multiplications for the final
product are not included.
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The final batched division costs 4 in this measure; the remaining cost is 9 times
the per-output length of the Bos–Coster addition chain.

One can see from the table that the Bos–Coster addition chain has per-output
length approximately 1 for e = 1; 1.9 for e = 2; 3.3 for e = 3; 11 for e = 6; and
22 for e = 12. For comparison, the addition chain used in GMP-ECM has per-
output length approximately ed1/ϕ(d1): i.e., roughly 4e for the range of d1 shown
in the table. This does not imply that GMP-ECM would benefit from switching
to the Bos–Coster addition chain: GMP-ECM’s stage-2 time is determined not
only by addition-chain length but also by the number of inversions that can be
performed in parallel.

By default EECM-MPFQ uses MPFQ to compute the final product. However,
the user can ask EECM-MPFQ to switch to product trees and scaled remain-
der trees, using Shoup’s NTL library for fast polynomial arithmetic; this saves
time when #{i}+ #{j} is sufficiently large. In theory, one can and should inte-
grate these computations, using fast polynomial arithmetic to split the product
computation into problems that are small enough to be handled efficiently by
MPFQ; in practice, this approach is hampered by the difficulty of moving data
between NTL and MPFQ.

5.7. Measurements of CPU cycles. A 300-curve test of EECM-MPFQ took
4.7 million cycles per curve on a single core of a 3.2GHz AMD Phenom II X4
(100f42) for a 240-bit n with B1 = 1024, d1 = 630, #{i} = 72, #{j} = 72, and
e = 1. Here B1 + d1#{i} = 46384. For comparison, a 300-curve test of GMP-
ECM took 10.8 million cycles per curve on the same CPU for the same 240-bit
n with B1 = 1024, B2 = 41526, and e = 1. GMP-ECM took 11.5 million cycles
per curve with B2 = 50646, the next B2 supported by GMP-ECM after 41526.

Increasing e to 3 increased the EECM-MPFQ time with B1+d1#{i} = 46384
to 5.4 million cycles per curve, increased the GMP-ECM time with B2 = 41526
to 13.4 million cycles per curve, and increased the GMP-ECM time with B2 =
50646 to 14.7 million cycles per curve.

Increasing d1 to 510510, #{i} to 46080, and e to 12 increased the EECM-
MPFQ time to 34 billion cycles per curve. Here d1#{i} = 23524300800. For
comparison, GMP-ECM took only 18 billion cycles per curve with e = 12 and
B2 = 23412731170.

6 Edwards curves with large torsion

Mazur’s theorem [35] says that the torsion group Etor(Q) of any elliptic curve
E is isomorphic to one of 15 finite groups: specifically,

Etor(Q) ∼=
{

Z/mZ, m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}, or
Z/2Z× Z/2mZ, m ∈ {1, 2, 3, 4}.

Any elliptic curve in Edwards form has a point of order 4. It follows that the
torsion group of an Edwards curve is isomorphic to either Z/4Z, Z/8Z, Z/12Z,
Z/2Z× Z/4Z, or Z/2Z× Z/8Z.
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The most interesting cases for ECM are Z/12Z and Z/2Z×Z/8Z, since they
force the group orders of E modulo primes p (of good reduction) to be divisible
by 12 and 16 respectively. In this section we show which conditions an Edwards
curve x2 + y2 = 1 + dx2y2 over Q must satisfy to have torsion group isomorphic
to Z/12Z or Z/2Z× Z/8Z. We give parameterizations for both cases.

One could hope to force divisibility by 12 in a different way, namely by finding
a twisted Edwards curve with Q-torsion group isomorphic to Z/2Z × Z/6Z. A
twisted Edwards curve does not need to have a point of order 4. However, we will
show that there are no twisted Edwards curves with Q-torsion group isomorphic
to Z/2Z× Z/6Z.

Computations in extended Edwards coordinates would benefit from using
twisted Edwards curves with a = −1. We show that such curves cannot have
Q-torsion group isomorphic to Z/12Z or Z/2Z× Z/8Z.

We first present the constructions and then show the impossibility results.

6.1. Torsion group Z/12Z. Theorem 6.2 states a genus-0 cover of the set of
Edwards curves over Q with torsion group Z/12Z. Theorem 6.3 identifies all the
points of finite order on such curves. Theorem 6.4 states a rational cover.

Theorem 6.2. If y3 ∈ Q \ {−2,−1/2, 0,±1} and x3 ∈ Q satisfy the equation
x2

3 = −(y2
3 + 2y3) then the Edwards curve x2 + y2 = 1 + dx2y2 over Q, where

d = −(2y3+1)/(x2
3y

2
3), has (x3, y3) as a point of order 3 and has Q-torsion group

isomorphic to Z/12Z. Conversely, every Edwards curve over Q with a point of
order 3 arises in this way.

Proof. Assume that such a y3 and x3 exist. Then d is defined and not equal to
0 or 1, and x2

3 + y2
3 = −2y3 = 1 + dx2

3y
2
3 . By Theorem 3.3, (x3, y3) is a point

of order 3 on E E,1,d(Q). Since each Edwards curve has a point of order 4 the
torsion group must contain a copy of Z/12Z. By Mazur’s theorem the torsion
group cannot be larger.

Conversely, if E E,1,d(Q) has a point of order 3, then by Theorem 3.3 the
point can be written as (x3, y3) where x2

3 + y2
3 = 1 + dx2

3y
2
3 = −2y3. Hence

x2
3 = −(y2

3 + 2y3). Note that x3 6= 0, since otherwise y2
3 = 1 = −2y3; and

note that y3 /∈ {0,−2} since otherwise x3 = 0. Now d = −(2y3 + 1)/(x2
3y

2
3).

Finally note that y3 /∈ {−1/2,±1} since otherwise d ∈ {0, 1}, contradicting the
definition of an Edwards curve. ut

Theorem 6.3. Let x2 + y2 = 1 + dx2y2 be an Edwards curve over Q with
Etor(Q) ∼= Z/12Z and let P3 = (x3, y3) be a point of order 3 on the curve.

The 12 torsion points on the curve and their respective orders are as follows:

point (0, 1) (0,−1) (±x3, y3) (±1, 0) (±x3,−y3) (±y3,±x3)
order 1 2 3 4 6 12

Proof. The points of order 6 are obtained as (±x3, y3) + (0,−1), the points of
order 12 by adding (±1, 0) to the points of order 3. ut
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Theorem 6.4. If u ∈ Q \ {0,±1} then the Edwards curve x2 + y2 = 1 + dx2y2

over Q, where

x3 =
u2 − 1
u2 + 1

, y3 = − (u− 1)2

u2 + 1
, d =

(u2 + 1)3(u2 − 4u+ 1)
(u− 1)6(u+ 1)2

has (x3, y3) as a point of order 3 and has Q-torsion group isomorphic to Z/12Z.
Conversely, every Edwards curve over Q with a point of order 3 arises in this
way.

The parameters u and 1/u give the same value of d.

Proof. Multiply the identity (u+1)2 +(u−1)2 = 2(u2 +1) by (u−1)2/(u2 +1)2

to see that x2
3 + y2

3 = −2y3, and observe that

d =
2(u− 1)2 − (u2 + 1)

u2 + 1
(u2 + 1)2

(u2 − 1)2

(u2 + 1)2

(u− 1)4
=
−2y3 − 1
x2

3y
2
3

.

Furthermore y3 /∈ {−2,−1/2, 0,±1} since u ∈ Q \ {0,±1}. By Theorem 6.2, the
Edwards curve x2 + y2 = 1 + dx2y2 over Q has (x3, y3) as a point of order 3 and
has torsion group isomorphic to Z/12Z.

Conversely, assume that the Edwards curve x2 + y2 = 1 + dx2y2 has a point
of order 3. By Theorem 6.2, the curve has a point (x3, y3) of order 3 for some
y3 ∈ Q \ {−2,−1/2, 0,±1} and x3 ∈ Q satisfying x2

3 = −(y2
3 + 2y3) and d =

−(2y3 + 1)/(x2
3y

2
3). Note that (x3, y3 + 1) is a point on the unit circle.

If x3 = ±1 then y3 + 1 = 0 so d = −(2y3 + 1)/(x2
3y

2
3) = 1; but Edwards

curves have d 6= 1. Hence x3 6= ±1. Furthermore x3 6= 0 since every point with
x-coordinate 0 has order 1 or 2.

Define u as the slope of the line between (1, 0) and (x3,−(y3 + 1)); i.e.,
u = (y3 + 1)/(1 − x3). Substitute y3 + 1 = u(1 − x3) into (y3 + 1)2 = 1 − x2

3

to obtain u2(1 − x3)2 = 1 − x2
3 = (1 + x3)(1 − x3), i.e., u2(1 − x3) = 1 + x3,

i.e., x3 = (u2 − 1)/(u2 + 1). Then u /∈ {0,±1} since x3 /∈ {0,−1}. Furthermore
y3 = u(1 − x3) − 1 = u(2/(u2 + 1)) − 1 = −(u − 1)2/(u2 + 1) and as above
d = (2y3 + 1)/(x2

3y
2
3) = (u2 + 1)3(u2 − 4u+ 1)/((u− 1)6(u+ 1)2).

The value of d is invariant under the change u 7→ 1/u since

(1 + u2)3(1− 4u+ u2)
(1− u)6(1 + u)2

=
(u2 + 1)3(u2 − 4u+ 1)

(u− 1)6(u+ 1)2
.

ut

Solving the equation d(u′) = d(u) for u′ in terms of u over the rationals
shows that u 7→ 1/u is the only rational transformation leaving d invariant that
works independently of u.

6.5. Torsion group Z/2Z × Z/8Z. Theorem 6.6 states a genus-0 cover of the
set of Edwards curves over Q with torsion group Z/2Z × Z/8Z. Theorem 6.8
identifies all the affine points of finite order on such curves. Theorem 6.9 states
a rational cover and identifies the degree of the cover.
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There are actually two types of curves in Theorem 6.6: points of order 8
double to (±1 : 0) on curves of the first type, or to ((1 : ±

√
d), (1 : 0)) on

curves of the second type. Curves of the second type are birationally equivalent
to curves of the first type by Theorem 6.7. Subsequent theorems consider only
the first type.

Theorem 6.6. If x8 ∈ Q \ {0,±1} and d = (2x2
8 − 1)/x4

8 is a square in Q then
the Edwards curve x2 + y2 = 1 + dx2y2 over Q has (x8,±x8) as points of order
8 doubling to (±1, 0), and has Q-torsion group isomorphic to Z/2Z × Z/8Z.
Conversely, every Edwards curve over Q with Q-torsion group isomorphic to
Z/2Z× Z/8Z and a point of order 8 doubling to (±1, 0) arises in this way.

If x̄8 ∈ Q \ {0,±1} and d = 1/(x̄2
8(2 − x̄2

8)) is a square in Q then the
Edwards curve x2 + y2 = 1 + dx2y2 over Q has (x̄8,±1/(x̄8

√
d)) as points of

order 8 doubling to ((1 : ±
√
d), (1 : 0)), and has Q-torsion group isomorphic to

Z/2Z × Z/8Z. Conversely, every Edwards curve over Q with Q-torsion group
isomorphic to Z/2Z×Z/8Z and a point of order 8 doubling to ((1 : ±

√
d), (1 : 0))

arises in this way.
Every Edwards curve over Q with Q-torsion group isomorphic to Z/2Z ×

Z/8Z arises in one of these two ways.

Proof. Any such x8 yields d 6= 0, 1, so x2 + y2 = 1 + dx2y2 is an Edwards curve.
By Theorems 3.1 and 3.2, the curve has points (0,−1) and ((1 : 0), (1 : ±

√
d)) of

order 2, and points (x8,±x8) of order 8 doubling to (±1, 0). Similarly, any such
x̄8 yields an Edwards curve with points (0,−1) and ((1 : 0), (1 : ±

√
d)) of order

2 and (x̄8,±1/(x̄8

√
d)) of order 8 doubling to ((1 : ±

√
d), (1 : 0)).

In both cases the torsion group contains a copy of Z/2Z×Z/8Z. By Mazur’s
theorem the torsion group cannot be larger.

Conversely, assume that x2 + y2 = 1 + dx2y2 is an Edwards curve with Q-
torsion group isomorphic to Z/2Z×Z/8Z. There are four elements of order 4 in
Z/2Z×Z/8Z, all doubling to the same element, so there are four order-4 points
on the curve, all doubling to the same point.

The points (±1, 0) have order 4 and double to (0,−1), so the other two points
of order 4 also double to (0,−1). By Theorem 3.1, those other two points must
be ((1 : ±

√
d), (1 : 0)), and d must be a square.

Now any point of order 8 must double to (±1, 0) or to ((1 : ±
√
d), (1 : 0)).

In the first case, by Theorem 3.2, the point is (x8,±x8) for some root x8 of
dx4

8 − 2x2
8 + 1; hence x8 /∈ {0,±1} and d = (2x2

8 − 1)/x4
8. In the second case, by

Theorem 3.2, the point is (x̄8,±1/(x̄8

√
d)) for some root x̄8 of dx̄4

8 − 2dx̄2
8 + 1;

hence x̄8 /∈ {0,±1} and d = 1/(x̄4
8 − 2x̄2

8). ut

Theorem 6.7. Let d be a square. The Edwards curves x2 + y2 = 1 + dx2y2 and
x̄2 + ȳ2 = 1+(1/d)x̄2ȳ2 are birationally equivalent via the map x̄ = x

√
d, ȳ = 1/y

with inverse x = x̄/
√
d, y = 1/ȳ. The map fixes (0,±1).

Proof. Inserting x̄ = x
√
d, ȳ = 1/y into x2 + y2 = 1 + dx2y2 gives x̄2/d+ 1/ȳ2 =

1 + x̄2/ȳ2 which after multiplication by ȳ2 gives x̄2ȳ2/d+ 1 = ȳ2 + x̄2. The only
exceptional points are (±1, 0). The statement about (0,±1) follows by direct
inspection. ut
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In particular, each curve of the second type in Theorem 6.6 is birationally
equivalent to a curve of the first type. Indeed, assume that x̄8 ∈ Q\{0,±1} and
that d = 1/(x̄2

8(2−x̄2
8)) is a square in Q. Define x8 = x̄8

√
d. Then x2

8 = 1/(2−x̄2
8),

so (2x2
8 − 1)/x4

8 = (2/(2 − x̄2
8) − 1)(2 − x̄2

8)2 = x̄2
8(2 − x̄2

8) = 1/d, which is
a square; furthermore, x8 /∈ {0,±1} since 2 − x̄2

8 6= 1 since x̄8 /∈ {±1}. Hence
x2+y2 = 1+(1/d)x2y2 is a curve of the first type. The curve x2+y2 = 1+dx2y2 is
birationally equivalent to x̄2 + ȳ2 = 1+(1/d)x̄2ȳ2 by Theorem 6.7. Consequently
we can restrict attention to curves of the first type, i.e., curves on which the
points of order 8 double to (±1, 0).

Theorem 6.8. Assume that x8 ∈ Q \ {0,±1} and that d = (2x2
8 − 1)/x4

8 is a
square in Q. Then there are 16 points of finite order on E E,1,d over Q. The
affine points of finite order are as follows:

point (0, 1) (0,−1) (±1, 0) (±x8,±x8)
(
±1/(x8

√
d),±1/(x8

√
d)
)

order 1 2 4 8 8

where the signs are taken independently.

Proof. Theorem 3.1 (with a = 1) shows that the 4 affine points (0, 1), (0,−1),
and (±1, 0) are on E E,1,d and have the stated orders. It also shows that the
2 non-affine points ((1 : 0), (1 : ±

√
d)) have order 2 and that the 2 non-affine

points ((1 : ±
√
d), (1 : 0)) have order 4. Theorem 3.2 shows that the other affine

points listed are 8 distinct points on E E,1,d and have order 8. The torsion group
has exactly 16 elements by Theorem 6.6. ut

Theorem 6.9. If u ∈ Q\{0,−1,−2} then the Edwards curve x2+y2 = 1+dx2y2

over Q, where

x8 =
u2 + 2u+ 2
u2 − 2

, d =
2x2

8 − 1
x4

8

,

has (x8, x8) as a point of order 8 and has Q-torsion group isomorphic to Z/2Z×
Z/8Z.

Conversely, every Edwards curve over Q with torsion group isomorphic to
Z/2Z × Z/8Z on which the points of order 8 double to (±1, 0) is expressible in
this way.

The parameters u, 2/u, −2(u + 1)/(u + 2), −(2 + u)/(1 + u), −(u + 2),
−2/(u+ 2), −u/(u+ 1), and −2(u+ 1)/u give the same value of d and they are
the only values giving this d.

Proof. Divide the identity 2(u2 + 2u + 2)2 − (u2 − 2)2 = (u2 + 4u + 2)2 by
(u2 − 2)2 to see that 2x2

8 − 1 = (u2 + 4u + 2)2/(u2 − 2)2. Hence d is a square.
Furthermore x8 6= 0 since u2 + 2u + 2 6= 0; x8 6= 1 since u 6= −2; and x8 6= −1
since u /∈ {0,−1}. By Theorem 6.6, the curve E E,1,d has (x8, x8) as a point of
order 8, and has Q-torsion group isomorphic to Z/2Z× Z/8Z.

Conversely, assume that an Edwards curve has torsion group isomorphic to
Z/2Z × Z/8Z and has a point of order 8 doubling to (±1, 0). By Theorem 6.6,
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the curve can be expressed as E E,1,d for some x8 ∈ Q \ {0,±1} such that d =
(2x2

8 − 1)/x4
8 is a square in Q; i.e., such that 2x2

8 − 1 is a square in Q.
Choose r ∈ Q such that 2x2

8−1 = r2. Define u as the slope of the line between
(1,−1) and (x8, r): i.e., u = (r + 1)/(x8 − 1). Substitute r = u(x8 − 1)− 1 into
2(x2

8 − 1) = (r + 1)(r − 1) to obtain 2(x2
8 − 1) = u(x8 − 1)(u(x8 − 1) − 2),

i.e., 2(x8 + 1) = u(u(x8 − 1) − 2), i.e., 2x8 + 2 = u2x8 − u2 − 2u, i.e., x8 =
(u2 + 2u + 2)/(u2 − 2). Finally u /∈ {0,−1} since x8 6= −1, and u 6= −2 since
x8 6= 1.

The identity

(d(u)− d(v))(((u+ 1)2 + 1)((v + 1)2 + 1))4

= 16(u− v)(uv − 2)((u+ 2)v + 2(u+ 1))(u+ 2 + (u+ 1)v)
· (u+ v + 2)((u+ 2)v + 2)(u+ (u+ 1)v)(uv + 2(u+ 1))

immediately shows that if v is any of the listed values u, 2/u, . . . then d(v) = d(u).
Conversely, if v is not one of those values then none of the factors u−v, uv−2, . . .
are 0 so d(v) 6= d(u). ut

6.10. Impossibility results. The following theorem shows that the only way
for a twisted Edwards curve to have exactly 12 torsion points is to have torsion
group isomorphic to Z/12Z. The subsequent theorems consider twisted Edwards
curves with a = −1 and show that these cannot have Q-torsion group isomorphic
to Z/12Z or Z/2Z× Z/8Z.

Theorem 6.11. There exists no twisted Edwards curve over Q with torsion
group isomorphic to Z/2Z× Z/6Z.

Proof. Let a, d be distinct nonzero elements of Q. Suppose that the twisted
Edwards curve E E,a,d : ax2 + y2 = 1 + dx2y2 has Q-torsion group isomorphic to
Z/2Z× Z/6Z.

There are three elements of order 2 in Z/2Z×Z/6Z, so there are three points
of order 2 in E E,a,d(Q). By Theorem 3.1 the only possible points of order 2 are
(0,−1) and ((1 : 0), (±

√
a/d : 1)). Hence

√
a/d ∈ Q.

There are also elements of order 3 in Z/2Z×Z/6Z. Choose a point of order
3 in E E,a,d(Q). By Theorem 3.3 this point can be expressed as (x3, y3) where
ax2

3 + y2
3 = 1 + dx2

3y
2
3 = −2y3.

Write u = 1 + y3. Then 1 − u2 = −2y3 − y2
3 = ax2

3. Starting from dx2
3y

2
3 =

ax2
3 + y2

3 − 1, replace x2
3 by (1 − u2)/a and replace y3 by u − 1 to see that

(d/a)(1−u2)(u−1)2 = (1−u2)+(u−1)2−1 = 1−2u. Hence s2 = 4(1−2u)(1−u2)
where s = 2(1− u2)(u− 1)

√
d/a ∈ Q.

In other words, (2u, s) is a Q-rational point on the elliptic curve y2 = x3 −
x2−4x+4. This elliptic curve has rank 0 over Q, and has exactly 7 affine points
over Q, as one can verify by typing

E=EllipticCurve(QQ,[0,-1,0,-4,4])
print E.rank()
print E.torsion_points()
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into the Sage computer-algebra system [38]. Specifically, (x, y) must be one of
(±2, 0), (0,±2), (1, 0), (4,±6). Hence u ∈ {±1, 0, 1/2, 2}. In each case (a : d) =
((1−u2)(u−1)2 : 1−2u) ∈ {(1 : 1), (0 : 1), (1 : 0)}, contradicting the assumption
that a, d are distinct nonzero elements of Q. ut

Theorem 6.12. There exists no twisted Edwards curve of the form ax2 + y2 =
1 + dx2y2 over Q with a = −1 and torsion subgroup isomorphic to Z/12Z.

Proof. Suppose that the twisted Edwards curve E E,a,d : ax2 + y2 = 1 + dx2y2

has Q-torsion group isomorphic to Z/12Z with a = −1.
There is a unique element of order 2 in Z/12Z, so (0,−1) is the only point

of order 2 on E E,a,d(Q). Furthermore, there are elements of order 4 in Z/12Z,
so there are points on E E,a,d(Q) doubling to (0,−1). By Theorem 3.1 the only
possibilities for such points are ((1 : ±

√
a), (0 : 1)) or ((1 : ±

√
d), (1 : 0)). Hence

a or d is a square in Q; but a = −1 is not a square in Q, so d is a square in Q.
There are also elements of order 3 in Z/12Z. As in the proof of Theorem 6.11

there exists u ∈ Q such that (d/a)(1 − u2)(u − 1)2 = 1 − 2u. Here a = −1 so
s2 = −4(1− u2)(1− 2u) where s = 2(1− u2)(u− 1)

√
d ∈ Q.

In other words, (−2u, s) is a Q-rational point on the elliptic curve y2 = x3 +
x2−4x−4. This elliptic curve has rank 0 over Q, and has exactly 3 affine points
over Q: specifically, (x, y) must be one of (±2, 0), (−1, 0). Hence u ∈ {±1, 1/2}.
If u ∈ {±1} then 0 = (d/a)(1 − u2)(u − 1)2 = 1 − 2u 6= 0, contradiction; if
u = 1/2 then 0 = 1− 2u = (d/a)(1− u2)(u− 1)2 6= 0, contradiction. ut

Theorem 6.13. There exists no twisted Edwards curve of the form ax2 + y2 =
1+dx2y2 over Q with a = −1 and torsion subgroup isomorphic to Z/2Z×Z/8Z.

Proof. Suppose that the twisted Edwards curve E E,a,d : ax2 + y2 = 1 + dx2y2

has Q-torsion group isomorphic to Z/2Z× Z/8Z with a = −1.
The torsion group contains exactly three elements of order 2, so

√
a/d ∈ Q

as in the proof of Theorem 6.11; i.e.,
√
−d ∈ Q. Consequently d is not a square

in Q.
The torsion group also contains exactly 4 elements of order 4. These elements

cannot double to (0,−1): otherwise they would have the form ((1 : ±
√
−1), (0 :

1)) or ((1 : ±
√
d), (1 : 0)) by Theorem 3.1, but neither −1 nor d is a square in

Q. The elements of order 4 therefore double to ((1 : 0), (±
√
−1/d : 1)).

If s2 = −1/d then the elements of order 4 doubling to ((1 : 0), (s : 1)) are
(±
√
s,±
√
s) by Theorem 3.1, where the ± signs are assumed independently. In

particular, if such elements are defined over Q, then ±
√
s ∈ Q, so s is a square

in Q, so −1/d is a fourth power in Q, say f4. Now (±f,±f) are points of order
4 doubling to ((1 : 0), (f2 : 1)), and there are no other points of order 4.

The torsion group contains a point P8 of order 8. This point doubles to
(±f,±f). Assume without loss of generality that [2]P8 = (±f, f): otherwise
replace f by −f . Further assume without loss of generality that [2]P8 = (f, f):
otherwise replace P8 by −P8. Any point having a zero coordinate has order at
most 4, so P8 must be an affine point, say (x8, y8), with x8 6= 0 and y8 6= 0.
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Now [2]P8 = (f, f) implies (2x8y8)/(−x2
8 +y2

8) = f = (y2
8 +x2

8)/(2+x2
8−y2

8),
with −x2

8 + y2
8 6= 0 and 2 + x2

8 − y2
8 6= 0. In particular, (y2

8 + x2
8)(−x2

8 + y2
8) =

(2x8y8)(2+x2
8−y2

8), so (y2
8−x2

8)(x2
8+y2

8+2x8y8) = 4x8y8; i.e., (y2
8−x2

8)r2 = 4x8y8

where r = x8 + y8.
Define s = 2(y2

8 + x2
8)/(y2

8 − x2
8). Then

s2 − 4 =
4((y2

8 + x2
8)2 − (y2

8 − x2
8)2)

(y2
8 − x2

8)2
=

16y2
8x

2
8

(y2
8 − x2

8)2
= r4

so (s+ r2)2− 4 = 2r2(s+ r2); consequently ((s+ r2)/2, r(s+ r2)/2) is a rational
point on the elliptic curve y2 = x3 − x. This curve has rank 0 over Q and
exactly 3 affine points over Q, namely (±1, 0) and (0, 0). Hence r(s + r2) = 0;
consequently 0 = r(s + r2)(s− r2) = r(s2 − r4) = 4r, so r = 0, so x8 + y8 = 0,
contradicting −x2

8 + y2
8 6= 0. ut

7 Edwards curves with large torsion and positive rank

Atkin and Morain in [2] found an infinite family of elliptic curves over Q with
torsion group Z/2Z×Z/8Z and with explicit non-torsion points. See [31, Section
6] for a few more such families. Suyama in [39] had earlier given an infinite
sequence of Montgomery curves with explicit non-torsion points and with group
order divisible by 12 over any prime field. GMP-ECM uses Suyama curves, as
discussed in [42]. In this section we translate the Atkin–Morain and Suyama
constructions from Weierstrass curves to Edwards curves.

Most Suyama curves have Q-torsion group only Z/6Z. Montgomery in [31,
Section 6] selected various curves with torsion group Z/12Z, computed the group
orders modulo primes p in the interval [104, 105], and found that the average
exponents of 2 and 3 in the group orders were almost exactly 11/3 and 5/3
respectively. We performed an analogous computation for primes in [106, 2 ·106],
using Edwards curves with torsion group Z/12Z constructed as in Section 6, and
found an even closer match to 11/3 and 5/3. For Suyama curves with torsion
group Z/6Z the averages were only 10/3 and 5/3, except for a few unusual curves
such as σ = 11 in the notation of Theorem 7.5 below.

This section relies on the equivalence in [7] between Montgomery curves
and twisted Edwards curves. The twisted Edwards curve E E,a,d is birationally
equivalent to the Montgomery curve E M,A,B : Bv2 = u3 + Au2 + u, where
A = 2(a+d)/(a−d) and B = 4/(a−d). The map (x, y) 7→ (u, v) = ((1+y)/(1−y),
(1+y)/((1−y)x)) is a birational equivalence from E E,a,d to E M,A,B , with inverse
(u, v) 7→ (x, y) = (u/v, (u− 1)/(u+ 1)).

7.1. The Atkin–Morain construction. The Atkin–Morain family is param-
eterized by points (s, t) on a particular elliptic curve T 2 = S3 − 8S − 32. Atkin
and Morain suggest computing multiples (s, t) of (12, 40), a non-torsion point
on this curve. Beware that these points have rapidly increasing height.

Theorem 7.2 (Atkin, Morain). Let (s, t) be a rational point on the curve
T 2 = S3−8S−32. Define α = ((t+ 25)/(s− 9) + 1)−1, β = 2α(4α+1)/(8α2−1),
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c = (2β − 1)(β − 1)/β, and b = βc. Then the elliptic curve

Eα : V 2 = U3 +
((c− 1)2 − 4b)

4
U2 +

b(c− 1)
2

U +
b2

4

has torsion group isomorphic to Z/2Z × Z/8Z and a point with U -coordinate
−(2β − 1)/4.

Theorem 7.3. Let (s, t) be a rational point on the curve T 2 = S3 − 8S − 32.
Define α and β as in Theorem 7.2. Define d = (2(2β − 1)2 − 1)/(2β − 1)4.
Then the Edwards curve x2 + y2 = 1 + dx2y2 has torsion group isomorphic to
Z/2Z × Z/8Z and a point (x1, y1) with x1 = (2β − 1)(4β − 3)/(6β − 5) and
y1 = (2β − 1)(t2 + 50t− 2s3 + 27s2 − 104)/(t+ 3s− 2)(t+ s+ 16).

Proof. Put x8 = 2β − 1. By construction x8 satisfies (2x2
8 − 1)/x4

8 = d. Further-
more

d =
(8α2 − 1)2(8α2 + 8α+ 1)2

(8α2 + 4α+ 1)4
,

so d is a square. By Theorem 6.6, the Edwards curve has torsion group isomorphic
to Z/2Z × Z/8Z. Finally, a straightforward calculation shows that x2

1 + y2
1 =

1 + dx2
1y

2
1 . ut

The point with U -coordinate −(2β − 1)/4 in Theorem 7.2 is generically a
non-torsion point. The V -coordinate of the point is not stated explicitly in [2].
The point (x1, y1) in Theorem 7.3 is the corresponding point on the Edwards
curve.

7.4. The Suyama construction. The Suyama family has lower torsion but
a simpler parametrization. We briefly review Suyama’s family and present an
analogous result for twisted Edwards curves.

Theorem 7.5 (Suyama). Let σ > 5 be an integer. Define

α = σ2 − 5, β = 4σ, U1 = α3, W1 = β3,

A = (β − α)3(3α+ β)/(4α3β)− 2, B = α/W1.

Then the elliptic curve E M,A,B : Bv2 = u3 +Au2 + u has a Q-torsion subgroup
isomorphic to Z/6Z.

Let V1 = (σ2 − 1)(σ2 − 25)(σ4 − 25). Then (u1, v1) = (U1/W1, V1/W1) is a
non-torsion point on E M,A,B.

Theorem 7.6. Let σ > 5 and α, β, U1, V1,W1 as in Theorem 7.5. For a =
(β−α)3(3α+β)β2/(4α4) and d = (β+α)3(β−3α)β2/(4α4) the twisted Edwards
curve ax2 + y2 = 1 + dx2y2 has a non-torsion point (x1, y1) = (α3/V1, (α3 −
β3)/(α3 + β3)) and a Q-torsion subgroup isomorphic to Z/6Z.

Proof. The birational equivalence between Montgomery curves and twisted Ed-
wards curves gives A = (β − α)3(3α + β)/(4α3β) − 2 and B = α/β3 as in
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Theorem 7.5. Furthermore, we get the desired values for a and d. Mapping the
point (u1, v1) = (α3/β3, V1/β

3) to E E,a,d yields the desired point (x1, y1):

x1 = u1/v1 = α3/V1 and y1 =
u1 − 1
u1 + 1

=
α3 − β3

α3 + β3
.

ut

8 Edwards curves with small parameters, large torsion,
and positive rank

One way to save time in computations on twisted Edwards curves is to choose
small curve parameters a and d and a small-height non-torsion base point (X1 :
Y1 : Z1); see Section 2.8. Another way to save time is to construct curves with
large Q-torsion group and positive rank; see Section 7. Unfortunately, essentially
all of the curves constructed in Section 7 have a, d,X1, Y1, Z1 of large height.

Our aim in this section is to combine these two time-saving techniques, find-
ing twisted Edwards curves that simultaneously have small parameters a, d, a
small-height non-torsion point (X1 : Y1 : Z1), and large torsion over Q.

Overall we found more than 100 small Edwards curves having small-height
non-torsion points and at least 12 torsion points over Q. See http://eecm.cr.
yp.to/goodcurves.html for the complete list. The number of d’s below height
H appears to grow as roughly lgH; for comparison, the Atkin-Morain procedure
discussed in Section 7 generates only about

√
lgH examples below height H. Of

course, one can easily write down many more small curves if one is willing to
sacrifice some torsion.

8.1. Torsion group Z/12Z. Theorem 6.4 gives a complete parameterization of
all Edwards curves with torsion group isomorphic to Z/12Z. Any rational point
(u, x3, y3, d, x1, y1) on the surface described by

x3 =
u2 − 1
u2 + 1

, y3 = − (u− 1)2

u2 + 1
, d =

(u2 + 1)3(u2 − 4u+ 1)
(u− 1)6(u+ 1)2

, x2
1 + y2

1 = 1 +dx2
1y

2
1

gives us a suitable curve for ECM if u /∈ {0,±1} and (x1, y1) is not a torsion
point. Theorem 6.3 lists all affine torsion points.

Assume without loss of generality that |u| > 1: otherwise replace u by 1/u,
obtaining the same d. Write u as a/b for integers a, b satisfying 0 < |b| < a.
Define e = (a2 − b2)/x1 and f = −(a − b)2/y1, and assume without loss of
generality that e, f are integers; otherwise scale a, b appropriately. The curve
equation x2

1+y2
1 = 1+dx2

1y
2
1 now implies, after some simplification, the (1, 1, 2, 2)-

weighted-homogeneous equation

(e2 − (a2 − b2)2)(f2 − (a− b)4) = 16a3b3(a2 − ab+ b2).

We found many small solutions to this equation, and thus many of the desired
Edwards curves, as follows. We considered a range of positive integers a. For each

http://eecm.cr.yp.to/goodcurves.html
http://eecm.cr.yp.to/goodcurves.html
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a we enumerated integers b with 0 < |b| < a. For each (a, b) we enumerated all
divisors of 16a3b3(a2 − ab + b2) and added (a2 − b2)2 to each divisor. For each
sum of the form e2 we added (a− b)4 to the complementary divisor, checked for
a square, checked that the corresponding (x1, y1) was a non-torsion point, etc.

After about a week of computation on some computers at LORIA we had
found 78 different values of d and checked that we had 78 different j-invariants.
Here are two examples:

• the solution (a, b, e, f) = (3, 2, 23, 7) produces the order-3 point (5/13,−1/13)
and the non-torsion point (5/23,−1/7) on the Edwards curve x2 + y2 =
1 + dx2y2 where d = −11 · 133/52;
• the solution (a, b, e, f) = (15180,−7540, 265039550, 161866240) produces the

non-torsion point (3471616/5300791,−201640/63229) on the Edwards curve
x2 + y2 = 1 + dx2y2 where d = 931391 · 3591053/1400033300482.

8.2. Torsion group Z/2Z × Z/8Z. Theorem 6.9 gives a complete parameteri-
zation of all Edwards curves with torsion group isomorphic to Z/2Z×Z/8Z and
with a point of order 8 doubling to (±1, 0). Any rational point (u, x8, d, x1, y1)
on the surface described by x8 = (u2 + 2u+ 2)/(u2 − 2), d = (2x2

8 − 1)/x4
8, and

x2
1 + y2

1 = 1 + dx2
1y

2
1 gives us a suitable curve for ECM if u /∈ {0,−1,−2} and

(x1, y1) is not a torsion point. Theorem 6.8 lists all affine torsion points.
We consider only u >

√
2. Various transformations of u listed in Theorem 6.9

show that this does not lose any generality: if 0 < u <
√

2 then 2/u >
√

2, and
2/u produces the same curve; if u < −2 then −(u + 2) > 0, and −(u + 2)
produces the same curve; if −2 < u < −1 then −2(u + 1)/(u + 2) > 0, and
−2(u+ 1)/(u+ 2) produces the same curve; if −1 < u < 0 then −u/(u+ 1) > 0,
and −u/(u+ 1) produces the same curve.

Write u = a/b, x1 = (a2 + 2ab+ 2b2)/e, and y1 = (a2 + 2ab+ 2b2)/f where
a, b, e, f are integers. Then a, b, e, f satisfy the (1, 1, 2, 2)-weighted-homogeneous
equation

(e2 − (a2 + 2ab+ 2b2)2)(f2 − (a2 + 2ab+ 2b2)2) = (4ab(a+ b)(a+ 2b))2.

We found many small solutions to this equation, and thus many of the desired
Edwards curves, by a procedure similar to the procedure used for Z/12Z. We
considered a range of positive integers a. For each a we enumerated integers b
between 1 and

⌊
a/
√

2
⌋
. For each (a, b) we enumerated all divisors of (4ab(a +

b)(a+ 2b))2, added (a2 + 2ab+ 2b2)2 to each divisor, and searched for squares.
After about a week of computation on some computers at LORIA, we had

found 25 different values of d and checked that we had 25 different j-invariants.
Here are two examples:

• the solution (a, b, e, f) = (3, 1, 19, 33) produces the order-8 point (17/7, 17/7)
and the non-torsion point (17/19, 17/33) on the Edwards curve x2 + y2 =
1 + dx2y2 where d = 1612/174;
• the solution (a, b, e, f) = (24882, 9009, 258492663, 580153002) produces the

non-torsion point (86866/18259, 8481/4001) on the Edwards curve x2 +y2 =
1 + dx2y2 where d = 56577192/33414.
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9 The impact of large torsion

This section reports various measurements of the success probability of EECM-
MPFQ. These measurements demonstrate the importance of choosing a curve
with a large torsion group. They also demonstrate the inaccuracy of several
common methods of estimating the success probability of ECM.

9.1. Impact of torsion for 20-bit primes. There are exactly 38635 primes
between 219 and 220. As an experiment we fed each of these primes to EECM-
MPFQ with B1 = 256 and d1 = 1. It turned out that the first curve configured
into EECM-MPFQ finds 12467, i.e., 32.2687%, of these primes. This curve is the
Edwards curve x2 +y2 = 1− (24167/25)x2y2, with base point P = (5/23,−1/7);
this curve has torsion group isomorphic to Z/12Z.

We then modified EECM-MPFQ to start with the curve x2 + y2 = 1 +
(25921/83521)x2y2, with base point P = (13/7, 289/49), and repeated the same
experiment. This curve has torsion group isomorphic to Z/2Z×Z/8Z; it is one
of the curves that EECM-MPFQ normally tries, although not the first in the
list. This curve finds 32.8433% of the primes.

We then made a more drastic modification to EECM-MPFQ, trying two new
curves with smaller torsion groups. The curve x2+y2 = 1+(1/36)x2y2, with base
point P = (8, 9), has torsion group only Z/2Z× Z/4Z and finds only 27.4854%
of the primes, losing a factor 1.17 compared to the original Z/12Z curve. The
curve x2 + y2 = 1 + (1/3)x2y2, with base point P = (2, 3), has torsion group
only Z/4Z and finds only 23.4709% of the primes, losing a factor 1.37 compared
to the original Z/12Z curve.

9.2. Impact of torsion for 30-bit primes. As a larger experiment we replaced
the 38635 20-bit primes by a random sample of 65536 distinct 30-bit primes and
increased (B1, d1) from (256, 1) to (1024, 1). The same four curves again had
remarkably different performance:

• 12.1597% of the primes were found by the Z/12Z curve.
• 11.9751% of the primes were found by the Z/2Z× Z/8Z curve.
• 9.8465% of the primes were found by the Z/2Z× Z/4Z curve.
• 9.0073% of the primes were found by the Z/4Z curve.

For comparison, GMP-ECM with a typical Suyama curve (specifically σ = 10)
finds 11.6837% of the same primes. We also tried GMP-ECM’s Pollard p−1 op-
tion; it found 6.3507% of the same primes. Normally the p−1 method is assumed
to be a helpful first step before ECM, because it uses fewer multiplications per
bit than an elliptic curve, but we comment that this benefit is reduced by the
p− 1 curve (a hyperbola) having torsion group only Z/2Z.

Figures 9.1 and 9.2 show the results of similar measurements for the same
four EECM curves for many prime powers B1: specifically, every prime power
B1 ≤ 500 for the 20-bit primes, and every prime power B1 ≤ 2000 for the 30-
bit primes. The figures show that Z/12Z (black) and Z/2Z × Z/8Z (blue) are
consistently better than Z/2Z× Z/4Z (blue, lower) and Z/4Z (black, lower).
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The figures also include measurements for the same GMP-ECM Suyama
curve (red) and p− 1 (red, lower). When B1 is large, the EECM-MPFQ Z/12Z
and Z/2Z × Z/8Z curves find significantly more primes than the GMP-ECM
Suyama curve.

9.3. Review of methods of estimating the success probability. Consider
the fraction of primes p ∈ [L,R] found by stage 1 of ECM with a particular
curve E, point P ∈ E(Q), and smoothness bound B1. Assume that E is chosen
to guarantee t as a divisor of E(Fp).

Standard practice in the literature is to estimate this fraction through the
following series of heuristic approximations:

Pr[uniform random prime p ∈ [L,R] has B1-powersmooth #〈P in E(Fp)〉]
?
≈ Pr[uniform random prime p ∈ [L,R] has B1-powersmooth #E(Fp)]
?
≈ Pr[uniform random ∈ tZ ∩ [(

√
L− 1)2, (

√
R+ 1)2] is B1-powersmooth]

?
≈ Pr[uniform random ∈ tZ ∩ [L,R] is B1-powersmooth]
?
≈ Pr[uniform random ∈ tZ ∩ [1, R] is B1-powersmooth]
?
≈ Pr[uniform random ∈ Z ∩ [1, R/t] is B1-powersmooth]
?
≈ ρ(u) where Bu1 = R/t

?
≈ 1/uu.

Here “B1-powersmooth” means “having no prime-power divisors larger than
B1,” and ρ is Dickman’s rho function introduced in [21]. Similar comments apply
to stage 2, with B1-powersmoothness replaced by a more complicated notion of
smoothness and with ρ replaced by a standard generalization.

For example, Montgomery in [31, Section 7] estimated the success chance of
a curve with 16 torsion points over Q as the B1-powersmoothness chance for a
uniform random integer in [1, p/16]. Similarly, Silverman and Wagstaff in [36]
estimated the success chance of a Suyama curve as the B1-powersmoothness
chance for a uniform random integer in [1, p/12], following Brent’s comment in
[15, Section 9.3] that choosing a Suyama curve “effectively reduces p to p/12 in
the analysis.” (As mentioned in Section 7, a typical Suyama curve has only 6
torsion points over Q, but a Suyama curve modulo p is guaranteed to have order
in 12Z.) Brent, Montgomery, et al. used Dickman’s rho function to estimate the
B1-powersmoothness chance for a uniform random integer.

9.4. Inaccuracy of the estimates. There are many reasons to question the
accuracy of the above approximations:

• Dickman’s rho function ρ is asymptotically 1/uu in the loose sense that
(log ρ(u))/(−u log u)→ 1 as u→∞, but is not actually very close to 1/uu:
for example, ρ(2) ≈ 1.11/22, ρ(3) ≈ 1.31/33, and ρ(4) ≈ 1.26/44.
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Fig. 9.1. For 20-bit primes: Measured stage-1 success probabilities for six curves, and
nine estimates. Horizontal axis is B1. Vertical axis is probability. Graphs from top to
bottom on right side: (blue, bumpy) EECM-MPFQ with a Z/2Z×Z/8Z curve; (black,
bumpy) EECM-MPFQ with a Z/12Z curve; (red, bumpy) GMP-ECM with a Suyama
curve; (gray, smooth) the ρ approximation to smoothness probability for [1, 220/16];
(green, smooth) the ρ approximation for [1, 220/12]; (blue, bumpy) EECM-MPFQ with
a Z/2Z×Z/4Z curve; (gray, bumpy) powersmoothness probability for 16Z∩ [219, 220];
(gray, smooth) the ρ approximation for [1, 220/8]; (green, bumpy) powersmoothness
probability for 12Z ∩ [219, 220]; (black, bumpy) EECM-MPFQ with a Z/4Z curve;
(gray, bumpy) powersmoothness probability for 8Z ∩ [219, 220]; (green, smooth) the
ρ approximation for [1, 220/4]; (green, bumpy) powersmoothness probability for 4Z ∩
[219, 220]; (red, bumpy) GMP-ECM with p−1; (orange, smooth) the u−u approximation
for [1, 220].
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Fig. 9.2. For a sample of 65536 30-bit primes: Measured stage-1 success probabilities
for six curves, and nine estimates. Horizontal axis is B1. Vertical axis is probabil-
ity. Graphs from top to bottom on right side: (black, bumpy) EECM-MPFQ with a
Z/2Z×Z/8Z curve; (blue, bumpy) EECM-MPFQ with a Z/12Z curve; (red, bumpy)
GMP-ECM with a Suyama curve; (gray, smooth) the ρ approximation to smoothness
probability for [1, 230/16]; (green, smooth) the ρ approximation for [1, 230/12]; (blue,
bumpy) EECM-MPFQ with a Z/2Z × Z/4Z curve; (gray, bumpy) powersmoothness
probability for 16Z∩[229, 230]; (black, bumpy) EECM-MPFQ with a Z/4Z curve; (gray,
smooth) the ρ approximation for [1, 230/8]; (green, bumpy) powersmoothness probabil-
ity for 12Z ∩ [229, 230]; (gray, bumpy) powersmoothness probability for 8Z ∩ [229, 230];
(green, smooth) the ρ approximation for [1, 230/4]; (green, bumpy) powersmoothness
probability for 4Z ∩ [229, 230]; (red, bumpy) GMP-ECM with p− 1; (orange, smooth)
the u−u approximation for [1, 230].
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• For each u ≥ 0, the B1-smoothness probability for an integer in [1, Bu1 ]
converges to ρ(u) as B1 →∞, and the same is true for B1-powersmoothness,
but the convergence is actually quite slow.

• Multiplying an element of Z ∩ [1, R/16] by 16 never gains powersmoothness
but can lose powersmoothness when the original exponent of 2 was large,
not an uncommon event among powersmooth integers.

• The ratio of smoothness probabilities for (e.g.) [1, Bu1 ] and [(1/2)Bu1 , B
u
1 ]

converges to 1 as B1 →∞, but the convergence is again quite slow.
• Lenstra commented in [28, page 660] that an elliptic curve has even order

with probability approximately 2/3, not 1/2. Many subsequent reports (for
example, by Brent in [15, Table 3] and McKee in [29, Section 2]) have lent
support to the idea that elliptic-curve orders are somewhat more likely to
be smooth than uniform random integers.

• The group order #E(Fp) is a multiple of the point order #〈P in E(Fp)〉.
The ratio is usually small but often enough to change powersmoothness, as
illustrated by the s = 420 example in Section 4.1.

The overall error is not extremely large but can easily be large enough to interfere
with optimization.

Recall that the curve x2 + y2 = 1− (24167/25)x2y2, with 12 torsion points,
finds 32.2687% of the primes in [219, 220] with B1 = 256 and d1 = 1; and that
changing to three other curves with 16, 8, and 4 torsion points changes 32.2687%
to 32.8433%, 27.4854%, and 23.4709% respectively. We computed several of the
standard estimates for these four success probabilities:

• A uniform random element of 12Z∩ [219, 220] has a 23.6067% chance of being
256-powersmooth. Note that this probability drastically underestimates the
actual ECM smoothness chance. Changing 12 to 16, 8, 4 changes 23.6067%
to 24.8192%, 20.5777%, and 16.8006% respectively.

• A uniform random element of 12Z ∩ [1, 220] has a 30.0317% chance of being
256-powersmooth. Changing 12 to 16, 8, 4 changes 30.0317% to 31.3019%,
26.4328%, and 21.8632% respectively.

• A uniform random element of Z∩ [1, 220/12] has a 30.7652% chance of being
256-powersmooth. Changing 12 to 16, 8, 4 changes 30.7652% to 33.3694%,
27.3689%, and 22.2511% respectively.

• If u = (log(220/12))/ log 256 then ρ(u) ≈ 28.1894%. Changing 12 to 16, 8, 4
changes 28.1894% to 30.6853%, 24.9832%, and 20.2442% respectively.

• If u = (log(220/12))/ log 256 then u−u ≈ 22.8824%. Changing 12 to 16, 8, 4
changes 22.8824% to 25%, 20.1540%, and 16.1283% respectively.

These approximations make 16 seem better than 12 by factors of 1.051, 1.042,
1.085, 1.089, and 1.093, when in fact 16 is better than 12 by a factor of only
1.018.

Figure 9.1 includes, for many prime powers B1, the B1-powersmoothness
chance of a uniform random element of tZ ∩ [219, 220] for four values of t (green
and gray graphs, bumpy), and ρ((log(220/t))/ logB1) for four values of t (green
and gray graphs, smooth). Figure 9.2 includes analogous results for 30-bit primes.
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It is clear that the ρ value is a poor approximation to the powersmoothness
chance, and that the powersmoothness chance is a poor approximation to the
ECM success chance.

One can ask whether better approximations are possible. We comment that
a fast algorithm to compute tight bounds on smoothness probabilities appeared
in [4], and that the same algorithm can be adapted to handle powersmoothness,
local conditions such as more frequent divisibility by 2, etc. However, one can
also ask whether approximations are necessary in the first place. ECM is most
frequently used to find rather small primes (for example, inside the number-field
sieve), and for those primes one can simply measure ECM’s performance by
experiment.

10 Choosing parameters

This section reports EECM-MPFQ’s overall performance at finding various sizes
of primes, when the parameters B1, d1, etc. are chosen sensibly.

10.1. Normalizing the success probability. Stage 1 will almost never find
any factors of n if B1 is very small, and stage 2 will almost never find any
factors of n if d1 and e are very small. The success probability increases as the
parameters increase, and eventually reaches 1 (for any particular size of prime);
however, the costs of stage 1 and stage 2 then become enormously large. It is
generally best to use intermediate parameters that balance the cost of each curve
against the success probability of the curve, and to compensate for a low success
probability by trying several curves.

Montgomery in [31, Table 7.4.1] computed an “expected time” obtained by
multiplying an “expected number of curves” by an “estimated time per curve”.
The “expected number of curves” was the reciprocal of an estimate of the success
probability per curve. The “estimated time per curve” was 5.5B1 milliseconds
for stage 1, 105d1 milliseconds for initial elliptic-curve operations in stage 2, etc.
Montgomery selected the constants 5.5, 105, etc. to approximately fit timings of
his ECM implementation on a DEC 5000.

We instead report actual measurements of EECM-MPFQ’s price-performance
ratio. Specifically, we report the actual number of modular multiplications used
by an EECM-MPFQ curve for both stage 1 and stage 2, divided by the actual
success probability of that curve within a target set of primes. To simplify these
reports we count S as M, we count multiplications by small numbers (such as the
coordinates of the base point) as M, and we skip the fast-polynomial-arithmetic
variant described in Section 5.3.

Our experiments actually used slightly fewer modular multiplications per
prime, because primes found in stage 1 did not incur the costs of stage 2 (and
primes found during the batched division in stage 2 did not incur the remaining
costs of stage 2). This cost reduction is reported as “savings” in Table 10.1 below.
An application that uses EECM with a similar distribution of primes within its
inputs will see a similar savings. On the other hand, an application faced with
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a large pool of inputs, where primes of the desired size appear within relatively
few inputs, will see smaller savings.

We also report, later in the section, the number of clock cycles used by
EECM-MPFQ for both stage 1 and stage 2, again divided by success probability.
The number of multiplications per prime found is a simpler measure than the
number of cycles per prime found, and is an adequate measure for seeing most
of this paper’s improvements, but it is not adequate for seeing the speedup from
GMP to MPFQ.

10.2. Impact of B1 and d1 for 20-bit primes. Recall from Section 9 that
EECM-MPFQ’s first curve finds 12467 of the 38635 20-bit primes using B1 = 256
and d1 = 1. This experiment used a total of 65900078M + 55479860S; each
successful prime therefore consumed 9736 modular multiplications.

We tried the same curve again using B1 = 37, d1 = 90, e = 1, and #{i} =
#{j}. This time EECM-MPFQ found 1527 primes in stage 1 and an additional
14017 primes in stage 2 (1242 during conversion to affine and 12775 at the end
of stage 2), for an overall success probability of 15544/38635 ≈ 40.2329%. The
cost of handling a worst-case input was 734M+ 212S, and if EECM-MPFQ had
incurred this cost for every input then it would have used a total of 28358090M+
8190620S, i.e., just 2351 modular multiplications per successful prime. EECM-
MPFQ actually used only 27357827M+ 8172296S, saving 2.8%, because primes
found in stage 1 did not incur the costs of stage 2.

Figure 10.1 shows the results of similar computations for many more pairs
(B1, d1). The figure quantifies the well-known importance of stage 2: d1 = 1
costs more than three times as many modular multiplications as the best d1 for
20-bit primes. The figure also confirms the idea that d1 should have several small
prime factors. Each computation used e = 1 and used EECM-MPFQ’s default
ratio #{i}/#{j} = 1.

10.3. Other sizes of primes. Table 10.1 reports the effectiveness of good
choices of (B1, d1, e,#{i}/#{j}) for 15-bit primes, 16-bit primes, 17-bit primes,
and so on through 50-bit primes. The “power” column shows that EECM-MPFQ
uses fewer than exp(0.9

√
2 log 2b log log 2b) modular multiplications per b-bit

prime found, for each b ∈ {25, 26, . . . , 50}. See http://eecm.cr.yp.to for per-
formance data for larger values of b.

The conventional wisdom — see, e.g., [15] — is that one should use Pollard’s
rho method for primes up to about 30 bits and then switch over to ECM. We
present ECM performance data for much smaller sizes as a basis for comparison
and for future improvements. Our guess is that improvements in ECM have
drastically reduced the optimal rho-to-ECM cutoff.
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bits B1 d1 e R samples Pr mults ratio power savings cycles

15 16 60 1 1 1612 65.4467% 475 725.8 0.9440 6.0743% 398383
16 16 60 1 1 3030 50.5941% 475 938.8 0.9369 3.7812% 519846
17 27 60 1 1 5709 54.6856% 632 1155.7 0.9250 4.4719% 542882
18 27 90 1 1 10749 53.7073% 816 1519.3 0.9231 4.2088% 655581
19 37 90 1 1 20390 50.4708% 946 1874.4 0.9145 4.0127% 753288
20 37 90 1 1 38635 40.2329% 946 2351.3 0.9092 2.7869% 940225
21 37 90 1 1 73586 30.9787% 946 3053.7 0.9088 1.8815% 1229364
22 47 120 1 1 140336 33.0086% 1292 3914.1 0.9075 2.1786% 1413109
23 64 120 1 1 268216 30.3744% 1491 4908.7 0.9045 1.9515% 1682287
24 81 210 1 1 513708 36.7985% 2276 6185.0 0.9026 2.5365% 1971371
25 97 210 1 1 985818 31.7403% 2427 7646.4 0.8994 2.1164% 2390659
26 97 210 1 1 1048576 25.4204% 2427 9547.5 0.8976 1.5147% 2973591
27 131 210 1 1 1048576 24.4857% 2904 11860.0 0.8959 1.4755% 3528747
28 131 210 1 1 1048576 19.7381% 2904 14712.7 0.8944 1.0864% 4371407
29 149 210 1 1 1048576 16.5716% 3065 18495.5 0.8945 0.8797% 5363333
30 149 210 1 1 1048576 13.1368% 3065 23331.5 0.8953 0.6386% 6769323
31 263 210 1 2 1048576 18.4570% 5376 29127.1 0.8953 1.0937% 7834148
32 263 210 1 2 1048576 15.0913% 5376 35623.1 0.8938 0.8394% 9615434
33 263 210 1 2 1048576 12.1644% 5376 44194.5 0.8939 0.6248% 11915678
34 343 330 1 1 1048576 12.3212% 6787 55084.0 0.8945 0.6643% 14534927
35 389 420 1 1 1048576 12.3528% 8384 67871.0 0.8944 0.6747% 17488151
36 433 420 1 1 1048576 10.6944% 8892 83146.3 0.8941 0.5658% 21345174
37 521 420 1 1 1048576 9.7486% 9909 101644.8 0.8937 0.4983% 25652386
38 521 420 1 1 1048576 7.9452% 9909 124717.5 0.8939 0.3825% 31436961
39 587 420 1 1 1048576 6.8847% 10621 154270.3 0.8948 0.3185% 38319718
40 587 420 1 1 1048576 5.6551% 10621 187812.8 0.8946 0.2510% 47190133
41 937 630 1 1 1048576 7.8935% 18236 231026.5 0.8954 0.4196% 56113371
42 1031 630 1 1 1048576 6.9196% 19386 280161.7 0.8953 0.3544% 67437743
43 1031 630 1 1 1048576 5.7678% 19386 336106.1 0.8945 0.2840% 81087478
44 1031 630 1 1 1048576 4.6908% 19386 413273.7 0.8957 0.2201% 99684763
45 1151 630 1 1 1048576 4.1508% 20833 501906.6 0.8960 0.1901% 121979006
46 1319 630 1 1 1048576 3.7610% 22884 608454.3 0.8964 0.1619% 144341609
47 1709 840 1 1 1048576 4.3684% 32129 735486.6 0.8966 0.2170% 175028834
48 1889 840 1 1 1048576 3.8442% 34195 889529.8 0.8970 0.1785% 211435752
49 2221 840 1 1 1048576 3.5111% 37877 1078765.6 0.8977 0.1548% 251473421
50 2521 840 2 1 1048576 3.3565% 42981 1280546.8 0.8971 0.1686% 296542182

Table 10.1. Cost ratio for sample sets of b-bit primes for b ∈ {15, 16, . . . , 50}. “Sam-
ples” is the size of the sample set. “Pr” is the success probability, within the sample
set, of the curve x2 + y2 = 1 − (24167/25)x2y2 with base point (5/23,−1/7) and tor-
sion group Z/12Z, using EECM-MPFQ parameters B1, d1, e, and #{i}/#{j} = R.
“Mults” is the number of modular multiplications used for both stage 1 and stage 2.
“Ratio” is “mults” divided by “Pr”; i.e., the number of modular multiplications per
prime found. The logarithm of “ratio” is “power” times

p
2 log 2b log log 2b. “Savings”

is the fraction of modular multiplications saved within the sample set by primes found
before the end of stage 2. “Cycles” is the number of cycles used for both stage 1 and
stage 2 on a 3.2GHz AMD Phenom II X4 (100f42) for n between 192 bits and 256 bits,
divided by “Pr”; i.e., the number of cycles per prime found.
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